首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
地球物理   2篇
  2017年   1篇
  2010年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Mt. Merapi, Indonesia, is one of the most active and dangerous volcanoes in the Torrid Zone. This volcano has erupted frequently and has produced pyroclastic flows following the collapse of the summit lava dome. We used Synthetic Aperture Radar (SAR) data acquired by JERS-1 and RADARSAT-1 satellites from April 1996 to July 2006 to clarify the distribution patterns of the pyroclastic flow deposits. The extent of the deposits, termed P-zones, was accurately extracted by ratio operation and low-level feature extraction from SAR intensity images. These images highlighted temporal changes of the distribution area, perimeter, flow distance, included angle, and collapse direction. To validate the image-processing results, reflectance spectra of the rock samples collected after the eruption in June 2006 were measured in a laboratory. The reflectance spectra of all samples showed similar characteristics to the reference spectra, which were derived from atmospheric correction of Hyperion sensor image data covering the lava dome at the summit. Therefore, P-zones were confirmed to be the pyroclastic flow deposits originating from destruction of the lava dome at the summit. The image-processing results clarified that the extent of the distribution areas, perimeter, flow distances, and included angle of the P-zones were variable among the eruptions, while the collapse direction had a constant pattern. The collapse pattern followed a clockwise change from the south toward the west. By comparing the ratio maps of Bouguer gravity anomaly data in two periods, the change was interpreted to originate from the inclination of the conduit and the formation of shallow and deep magma reservoirs.  相似文献   
2.
Merapi volcano located in central Java, Indonesia, is one of the most active stratovolcanoes in the world. Many Earth scientists have conducted studies on this volcano using various methods. The geological features around Merapi are very attractive to be investigated because they have been formed by a complex tectonic process and volcanic activities since tens of millions of years ago. The southern mountain range, Kendeng basin and Opak active fault located around the study area resulted from these processes. DOMERAPI project was conducted to understand deep magma sources of the Merapi volcano comprehensively. The DOMERAPI network was running from October 2013 to mid-April 2015 by deploying 46 broad-band seismometers around the volcano. Several steps, i.e., earthquake event identification, arrival time picking of P and S waves, hypocenter determination and hypocenter relocation, were carried out in this study. We used Geiger’s method (Geiger 1912) for hypocenter determination and double-difference method for hypocenter relocation. The relocation result will be used to carry out seismic tomographic imaging of structures beneath the Merapi volcano and its surroundings. For the hypocenter determination, the DOMERAPI data were processed simultaneously with those from the Agency for Meteorology, Climatology and Geophysics (BMKG) seismic network in order to minimize the azimuthal gap. We found that the majority of earthquakes occurred outside the DOMERAPI network. There are 464 and 399 earthquakes obtained before and after hypocenter relocation, respectively. The hypocenter relocation result successfully detects some tectonic features, such as a nearly vertical cluster of events indicating a subduction-related backthrust to the south of central Java and a cluster of events to the east of Opak fault suggesting that the fault has an eastward dip.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号