首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
测绘学   3篇
地球物理   7篇
地质学   3篇
自然地理   5篇
  2015年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2006年   1篇
  2004年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1993年   1篇
  1990年   1篇
排序方式: 共有18条查询结果,搜索用时 31 毫秒
1.
The northeast-trending Pallatanga right-lateral strike-slip fault runs across the Western Cordillera connecting N50E-N70E trending normal faults in the Gulf of Guayaquil with N-S reverse faults in the Interandean Depression. Over most of its length, the fault trace has been partly obscured by erosional processes and can be inferred in the topography only at the large scale. Only the northern fault segment, which follows the upper Rio Pangor valley at elevations above 3600 m, is prominent in the morphology. Valleys and ridges cut and offset by the fault provide an outstanding record of right-lateral cumulative fault displacement. The fault geometry and kinematics of this particular fault segment can be determined from detailed topographic levellings. The fault strikes N30E and dips 75 to the NW. Depending on their size and nature, transverse morphological features such as tributaries of the Rio Pangor and intervening ridges, reveal right-lateral offsets which cluster around 27 ± 11m, 41.5 ± 4 m, 590 ± 65 m and 960 ± 70 m. The slip vector deduced from the short-term offsets shows a slight reverse component with a pitch of about 11.5 SW. The 41.5 ± 4 m displacements are assumed to be coeval with the last glacial termination, yielding a mean Holocene slip-rate of 2.9- 4.6 mm yr−1. Assuming a uniform slip rate on the fault in the long term, the 27 m offset appears to correlate with an identified middle Holocene morphoclimatic event, and the long term offsets of 590 m and 960 m coincide with the glacial terminations at the beginning of the last two interglacial periods.  相似文献   
2.
  The Western Alps are among the best studied collisional belts with both detailed structural mapping and also crustal geophysical investigations such as the ECORS and EGT seismic profile. By contrast, the present-day kinematics of the belt is still largely unknown due to small relative motions and the insufficient accuracy of the triangulation data. As a consequence, several tectonic problems still remain to be solved, such as the amount of N–S convergence in the Occidental Alps, the repartition of the deformation between the Alpine tectonic units, and the relation between deformation and rotation across the Alpine arc. In order to address these problems, the GPS ALPES group, made up of French, Swiss and Italian research organizations, has achieved the first large-scale GPS surveys of the Western Alps. More than 60 sites were surveyed in 1993 and 1998 with a minimum observation of 3 days at each site. GPS data processing has been done by three independent teams using different software. The different solutions have horizontal repeatabilities (N–E) of 4–7 mm in 1993 and 2–3 mm in 1998 and compare at the 3–5-mm level in position and 2-mm/yr level in velocity. A comparison of 1993 and 1998 coordinates shows that residual velocities of the GPS marks are generally smaller than 2 mm/yr, precluding a detailed tectonic interpretation of the differential motions. However, these data seem to suggest that the N–S compression of the Western Alps is quite mild (less than 2 mm/yr) compared to the global convergence between the African and Eurasian plate (6 mm/yr). This implies that the shortening must be accomodated elsewhere by the deformation of the Maghrebids and/or by rotations of Mediterranean microplates. Also, E–W velocity components analysis supports the idea that E–W extension exists, as already suggested by recent structural and seismotectonic data interpretation. Received: 27 November 2000 / Accepted: 17 September 2001  相似文献   
3.
Strong seismic anisotropy beneath Tibet has recently been reported from the study of SKS shear wave splitting. The fast split waves are generally polarized in an easterly direction, close to the present day direction of motion of the Tibetan crust relative to stable Eurasia, as deduced from Holocene slip rates on the major active faults in and around Tibet. This correlation may be taken to suggest that the whole Tibetan lithosphere is being extruded in front of indenting India and that the anisotropic layer is the deforming asthenosphere, that accommodates the motion of the Tibetan lithosphere relative to the fixed mantle at depth. Uncertainties about this motion are at present too large to bring unambiguous support to that view. Assuming that this view is correct however, a simple forward model is used to compute theoretical delay times as a function of the thickness of the anisotropic layer. The observed delay times would require a 50–100 km thick anisotropic layer beneath south-central Tibet and an over 200 km thick layer beneath north-central Tibet, where particularly hot asthenosphere has been inferred. This study suggests that the asthenospheric anisotropy due to present absolute block motion might be dominant under actively deforming continents.  相似文献   
4.
5.
We analyse geodetically estimated deformation across the Nepal Himalaya in order to determine the geodetic rate of shortening between Southern Tibet and India, previously proposed to range from 12 to 21 mm yr?1. The dataset includes spirit-levelling data along a road going from the Indian to the Tibetan border across Central Nepal, data from the DORIS station on Everest, which has been analysed since 1993, GPS campaign measurements from surveys carried on between 1995 and 2001, as well as data from continuous GPS stations along a transect at the logitude of Kathmandu operated continuously since 1997. The GPS data were processed in International Terrestrial Reference Frame 2000 (ITRF2000), together with the data from 20 International GNSS Service (IGS) stations and then combined using quasi- observation combination analysis (QOCA). Finally, spatially complementary velocities at stations in Southern Tibet, initially determined in ITRF97, were expressed in ITRF2000. After analysing previous studies by different authors, we determined the pole of rotation of the Indian tectonic plate to be located in ITRF2000 at 51.409±1.560° N and ?10.915±5.556°E, with an angular velocity of 0.483±0.015°. Myr?1. Internal deformation of India is found to be small, corresponding to less than about 2 mm yr?1 of baseline change between Southern India and the Himalayan piedmont. Based on an elastic dislocation model of interseismic strain and taking into account the uncertainty on India plate motion, the mean convergence rate across Central and Eastern Nepal is estimated to 19±2.5 mm yr?1, (at the 67% confidence level). The main himalayan thrust (MHT) fault was found to be locked from the surface to a depth of about 20 km over a width of about 115 km. In these regions, the model parameters are well constrained, thanks to the long and continuous time-series from the permanent GPS as well as DORIS data. Further west, a convergence rate of 13.4±5 mm yr?1, as well as a fault zone, locked over 150 km, are proposed. The slight discrepancy between the geologically estimated deformation rate of 21±1.5 mm yr?1 and the 19±2.5 mm yr?1 geodetic rate in Central and Eastern Nepal, as well as the lower geodetic rate in Western Nepal compared to Eastern Nepal, places bounds on possible temporal variations of the pattern and rate of strain in the period between large earthquakes in this region.  相似文献   
6.
On 12th May 2008, a MW7.9 earthquake occurred on the Longmenshan fault in the mountains to the west of Sichuan Province, which shook many Asian cities and killed at least 69 000 people.  相似文献   
7.
Baroux  Avouac  Bellier  & Sébrier 《地学学报》1998,10(3):139-144
Oblique subduction at the Sunda Trench has produced transpressive deformation of the plate leading edge. A major feature is the right-lateral Great Sumatran Fault (GSF) which probably absorbs a significant fraction of the trench-parallel shear. The kinematics of Sunda relative to Australia are discussed on the basis of available GPS data, and geologically determined slip rates on the GSF. In spite of the uncertainty on the plate motion, several robust conclusions can be drawn. The predicted obliquity of the convergence increases northward along the Sumatra Trench, up to about 30°. Slip partitioning is nearly complete along the northern segment of the Sumatra Trench, where the GSF probably accommodates most of the trench parallel shear. Along the southern segment, where obliquity is less than about 20°, slip-partitioning is not complete as indicated by oblique thrusting at the subduction. There, only a fraction of the trench parallel motion of Australia relative to SE Asia is accommodated along the GSF. These observations suggest that the leading edge behaves like a plastic wedge, except that slip-partitioning, although incomplete, is observed even at low obliquities.  相似文献   
8.
We use SPOT image pairs to determine horizontal offsets associated with the Mw 7.9 November 2002 Denali earthquake in the vicinity of Slate Creek, AK. Field measurements and aerial photographs are used to further characterize the geometry of the surface rupture. Aerial photographs show that shear localization occurs where the rupture trace is linear, and distributed off-fault deformation is common at fault bends and step-overs, or at geologic contacts between rock, glacial sediments, and ice. The displacement field is generated using a sub-pixel cross correlation technique between SPOT images taken before and after the earthquake. We identify the effects of glacier motion in order to isolate the tectonic displacements associated with the Denali earthquake. The resulting horizontal displacement field shows an along-strike variation in dextral shear, with a maximum of approximately 7.5 m in the east near 144° 52′W, which decreases to about 5 m to the west near 145° 45′W. If the November 2002 earthquake represents the long-term behavior of the Denali fault, it implies a westward decrease in the long-term dextral slip rate. A possible mechanism to accommodate the westward decreasing slip on the Denali fault is to transfer fault slip to adjacent east-trending contractional structures in the western region of the central Alaskan Range.  相似文献   
9.
Seismotectonics of the Nepal Himalaya from a local seismic network   总被引:3,自引:0,他引:3  
The National Seismological Network of Nepal consists of 17 short period seismic stations operated since 1994. It provides an exceptional view of the microseismic activity over nearly one third of the Himalayan arc, including the only segment, between longitudes 78°E and 85°E, that has not produced any M>8 earthquakes over the last century. It shows a belt of seismicity that follows approximately the front of the Higher Himalaya with most of the seismic moment being released at depths between 10 and 20 km. This belt of seismicity is interpreted to reflect interseismic stress accumulation in the upper crust associated with creep in the lower crust beneath the Higher Himalaya. The seismic activity is more intense around 82°E in Far-Western Nepal and around 87°E in Eastern Nepal. Western Nepal, between 82.5 and 85°E, is characterized by a particularly low level of seismic activity. We propose that these lateral variations are related to segmentation of the Main Himalayan Thrust Fault. The major junctions between the different segments would thus lie at about 87°E and 82°E with possibly an intermediate one at about 85°E. These junctions seem to coincide with some of the active normal faults in Southern Tibet. Lateral variation of seismic activity is also found to correlate with lateral variations of geological structures suggesting that segmentation is a long-lived feature. We infer four 250–400 km long segments that could produce earthquakes comparable to the M=8.4 Bihar–Nepal earthquake that struck eastern Nepal in 1934. Assuming the model of the characteristic earthquake, the recurrence interval between two such earthquakes on a given segment is between 130 and 260 years.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号