首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   3篇
地球物理   4篇
地质学   8篇
海洋学   1篇
自然地理   1篇
  2021年   1篇
  2019年   1篇
  2018年   5篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2009年   1篇
排序方式: 共有14条查询结果,搜索用时 17 毫秒
1.
In the current research, the ground-penetrating radar (GPR) method has been employed to identify physical and geometrical parameters of buried cylindrical structures using the pattern recognition approach. To achieve this goal, the well-established mathematical relationships between geometrical parameters of cylindrical target (radius, burial depth, and horizontal location) and the associated GPR hyperbolic response characteristics are employed using the template matching method. In order to validate the applicability of the template matching method in providing estimates of such parameters, the method is first examined on GPR responses of synthetic models with known geometrical parameters followed by applying on real data using two different similarity criteria including 2-D spatial convolution and normalized cross correlation in the wave number domain. In the first step, the GPR responses of 71 synthetic models encompassing one, two, and three horizontal cylinders were produced using the improved 2-D finite difference in frequency domain. Then, appropriate preprocessing sequences to reduce random noise caused by forward modeling were applied on synthetic data. The proposed algorithm applied on several synthetic model responses could estimate the known geometrical parameters of the buried cylinders with acceptable accuracy (maximum error of 15%). The template matching algorithm was also used to extract geometrical parameters of water and wastewater pipes buried in Imam Hossein Square, Isfahan city, as real GPR data. Depending on environmental conditions and subsurface host formation, the real GPR data normally contain a variety of noises; therefore, a series of appropriate objective preprocessing and processing stages were designed in order to apply on real GPR images before deploying template matching algorithm. The applicability of the template matching algorithm on real data and validity of the estimated parameters were proved based on assessing the accuracy of the estimated geometrical parameters of respective pipes through GPR response versus the measured parameters. The proposed algorithm was designed in such a way that all steps of estimating geometrical parameters of buried cylindrical targets are automatically carried out.  相似文献   
2.
3.
The aim of this work is to introduce the application of the fuzzy ordered weighted averaging method as a straightforward knowledge‐driven approach to explore porphyry copper deposits in an airborne prospect. In this paper, the proposed method is applied to airborne geophysical (potassium radiometry, magnetometry, and frequency‐domain electromagnetic) data, geological layers (fault and host rock zones), and various extracted alteration layers from remote sensing images. The central Iranian volcanic–sedimentary belt in Kerman province of Iran that is located within the Urumieh–Dokhtar (Sahand–Bazman) magmatic arc is chosen for this study. This region has high potential of mineral occurrences, especially porphyry copper, containing some active world‐class copper mines such as Sarcheshmeh. Two evidential layers, including the downward continued map and the analytic signal of such filtered magnetic data, are generated to be used as geophysical plausible traces of porphyry copper occurrences. The low values of the resistivity layer acquired from airborne frequency‐domain electromagnetic data are also used as an electrical criterion in this study. Four remote sensing evidential layers, including argillic, phyllic, propylitic, and hydroxyl alterations, are extracted from Advanced Spaceborne Thermal Emission and Reflection Radiometer images in order to map the altered areas associated with porphyry copper deposits. The Enhanced Thematic Mapper plus images are used to map iron oxide layer. Since potassium alteration is the mainstay of copper alteration, the airborne potassium radiometry data are used. Here, the fuzzy ordered weighted averaging method uses a wide range of decision strategies in order to generate numerous mineral potential/prospectivity maps. The final mineral potential map based upon desired geo‐data set indicates adequately matching of high‐potential zones with previous working mines and copper deposits.  相似文献   
4.
In most research studies, the problem of locating additional drillhole is simplified, and the ore body is considered as a 2d object. In this study, location of additional drillholes are optimized by considering the third dimension of the ore body, the azimuth and the dip of additional drill holes. A new objective function is defined to address the effect of rock type in locating new drillholes. The optimization problem is solved using a novel fuzzy-artificial bee colony algorithm, called FABC. The parameters of the FABC algorithm is dynamically adjusted using a designed fuzzy inference system with three performance measures as inputs and two outputs. The comparison performance with state-of-the-art optimization algorithm, using a nonparametric hypothesis test, indicates higher performance of the FABC algorithm. The results indicate significantly a decrease of kriging variance by introducing additional drillholes.  相似文献   
5.
Al Kajbaf  Azin  Bensi  Michelle 《Natural Hazards》2021,108(3):2513-2541
Natural Hazards - Recent heavy rainfall events and flash floods in Ellicott City, Maryland, highlight the importance of having robust and up-to-date estimates of precipitation frequency. NOAA Atlas...  相似文献   
6.
Ore grade is the most important source of uncertainty in a mining operation which plays an important role to classify run-of-mine (ROM) material into ore and waste parcels. As a widely used method, kriging estimator is used to estimate the grade of ore blocks. In conventional mining practices, if the estimated grade of a parcel is above the cut-off grade, this parcel is classified as ore, otherwise, is labelled as a waste parcel. An alternative approach is to simultaneously consider the grade of parcels and the economic consequences of sending parcels to destinations by applying simulation-based methods. In this study, kriging and simulation-based methods including loss and profit functions are applied on a real-world case study to classify ore/waste material based on the initial exploration data. Then, the actual known data, collected from blast holes samples, are compared with the estimated results in order to validate the performance of the presented methods. Outcomes show that simulation-based methods can perform better and show more adjustability with real data.  相似文献   
7.
Although oil barriers have been used for many years to contain slicked oil in open seas, the effect of waves on them has been rarely considered. In the present study, we investigated the response of rigid and flexible oil containment barriers in the presence of currents with and without waves. Two-dimensional experiments with both rigid and flexible oil containment barriers were carried out in a laboratory flume equipped with a pneumatic wave generator. The initiation of containment failure for various conditions were analyzed and compared.In the course of this study, the effect of wave characteristics on containment failure was discussed and some empirical equations were proposed to predict the initiation of failure in different conditions. Once the failure started, the effect of wave steepness on the loss rate was investigated. Finally a failure mode occurring due to the waves’ effect, called surging drainage failure, was studied.  相似文献   
8.
In recent years, with daily progress in technology, application of wind turbines for energy generation has become common all around the world. Installation of these turbines at sea encountered a great deal of challenge. One of the most important challenges is scouring around the piles of these turbines due to sea waves and current interaction. Many studies have been conducted in this respect; however, the results are insufficient, and the phenomenon remains poorly understood in tripod wind turbines. In this work, an attempt is made by combining the waves and currents, and changing the substructure of the turbine and the type of the bed materials, to extend the investigation of this phenomenon. The current research is focused on presenting the trend of changes in the amount of scouring. By changing the conditions (including variation in the wave height, variation of the current velocity, variation of the pile diameter, and variation in the size of bed particles), one can arrive at an appropriate estimate and prediction of the shape and the depth of the scour pit.  相似文献   
9.
Flip buckets are often used at the end of chute spillways to dissipate energy and direct flow to submergence plunge pool and especially in large dams. Flip buckets with central deviation also are a specific and new design of these buckets that have a transverse slope and are mixed in plan with a curvature. In this paper, the experimental and numerical simulation study of sediment scouring in such flip bucket has been targeted. Extensive experimental data are obtained from physical model studies conducted at Water Research Institute, Iran. The flow field with various flood discharges in a range of Froude numbers (Fr?=?\(V/\sqrt {gh}\): 3.5–7.5) in Flow3D model was compared to experimental results obtained from a similar model. Analyzing the simulated models in the Flow3D model and comparing the results with the experimental model, the hydraulic parameters of the pressure, velocity and depth of flow are determined. Considering the accuracy of the numerical model in simulating bed scouring, this model can be used for similar cases in large dams. The results of the simulation model compare well with the experimental results in parameters of the maximum scour depth, profile scouring and the ridge height which accumulates around downstream of the scour hole. This investigation improves the understanding of bed topography effects of downstream dams in high-velocity jet impact based on experimental observations and simulation analysis.  相似文献   
10.
Multiple-point geostatistical simulation is used to simulate the spatial structures of geological phenomena. In contrast to conventional two-point variogram based geostatistical methods, the multiple-point approach is capable of simulating complex spatial patterns, shapes, and structures normally observed in geological media. A commonly used pattern based multiple-point geostatistical simulation algorithms is called FILTERSIM. In the conventional FILTERSIM algorithm, the patterns identified in training images are transformed into filter score space using fixed filters that are neither dependent on the training images nor on the characteristics of the patterns extracted from them. In this paper, we introduce two new methods, one for geostatistical simulation and another for conditioning the results. At first, new filters are designed using principal component analysis in such a way to include most structural information specific to the governing training images resulting in the selection of closer patterns in the filter score space. We then propose to combine adaptive filters with an overlap strategy along a raster path and an efficient conditioning method to develop an algorithm for reservoir simulation with high accuracy and continuity. We also combine image quilting with this algorithm to improve connectivity a lot. The proposed method, which we call random partitioning with adaptive filters simulation method, can be used both for continuous and discrete variables. The results of the proposed method show a significant improvement in recovering the expected shapes and structural continuity in the final simulated realizations as compared to those of conventional FILTERSIM algorithm and the algorithm is more than ten times faster than FILTERSIM because of using raster path and using small overlap specially when we use image quilting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号