首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   2篇
地球物理   2篇
自然地理   2篇
  2014年   1篇
  1999年   1篇
  1988年   1篇
  1982年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
2.
Proposals are developed to update Tables 11.4‐1 and 11.4‐2 of Minimum Design Loads for Buildings and Other Structures published as American Society of Civil Engineers Structural Engineering Institute standard 7‐10 (ASCE/SEI 7–10). The updates are mean next generation attenuation (NGA) site coefficients inferred directly from the four NGA ground motion prediction equations used to derive the maximum considered earthquake response maps adopted in ASCE/SEI 7–10. Proposals include the recommendation to use straight‐line interpolation to infer site coefficients at intermediate values of (average shear velocity to 30‐m depth). The NGA coefficients are shown to agree well with adopted site coefficients at low levels of input motion (0.1 g) and those observed from the Loma Prieta earthquake. For higher levels of input motion, the majority of the adopted values are within the 95% epistemic‐uncertainty limits implied by the NGA estimates with the exceptions being the mid‐period site coefficient, Fv, for site class D and the short‐period coefficient, Fa, for site class C, both of which are slightly less than the corresponding 95% limit. The NGA data base shows that the median value of 913 m/s for site class B is more typical than 760 m/s as a value to characterize firm to hard rock sites as the uniform ground condition for future maximum considered earthquake response ground motion estimates. Future updates of NGA ground motion prediction equations can be incorporated easily into future adjustments of adopted site coefficients using procedures presented herein. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Earthquake Engineering & Structural Dynamics published by John Wiley & Sons Ltd.  相似文献   
3.
设定地震影响场的GIS模拟r   总被引:3,自引:0,他引:3       下载免费PDF全文
简要介绍了R. D. Borcherdt提出的考虑场地条件对地震动影响的方法;并利用该方法和美国旧金山湾区(San Francisco Bay Area)详细的地质及场地分类资料,采用GIS技术对设定地震的影响场进行模拟,编制了模拟软件.本研究是与美国地质调查局(U.S. Geological Survey)合作研究的部分成果.   相似文献   
4.
Summary. The reflection and refraction of general (homogeneous or inhomo-geneous) plane P and type-I S ( SV ) body waves incident on plane boundaries are considered for general linear viscoelastic solids. Reflection—refraction laws, physical characteristics of the waves, and the nature of critical angles are examined in detail at welded boundaries and a free surface. General visco-elasticity with no low-loss approximations predicts that contrasts in intrinsic absorption at boundaries give rise to inhomogeneous reflected and refracted waves with elliptical particle motions, velocities and maximum attenuations that vary with frequency and angle of incidence, energy propagation at speeds and directions different from phase propagation, phase propagation that in general is parallel to the boundary for at most one angle of incidence, and reflection—transmission coefficients dependent on energy flow due to wave interaction. None of these physical characteristics are predicted for waves incident on boundaries that respond instantaneously.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号