首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
地球物理   2篇
地质学   16篇
海洋学   3篇
自然地理   3篇
  2016年   4篇
  2015年   1篇
  2014年   5篇
  2013年   2篇
  2011年   2篇
  2009年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1994年   1篇
  1993年   1篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
This paper examines the distribution of unconsolidated sediment in the KwaZulu-Natal Bight located along the east coast of South Africa. Results show that there is a general shelf-wide sediment distribution of coarser grain sizes between depths of 60 and 100?m, punctuated by a broad swathe of mud offshore of the Thukela River. Seasonal changes in sediment distribution patterns are small, being restricted to seaward fining on the inner shelf off the fluvial sources. Sediment distribution reflects a partitioning between sediment populations that are current- influenced and relict (palimpsest) populations associated with submerged shorelines. Wave ravinement during the deglacial transgression, the reworking of submerged shorelines during sea-level stillstands and, to a lesser extent, the Agulhas Current system, are the dominant controls on sediment distribution.  相似文献   
2.
Stratigraphic records from sediment cores collected in a freshwater tidal marsh and in the estuary upstream and downstream from the marsh were used to determine the accumulation of nutrients and trace metals over long time periods. Analysis of pollen and seeds show that the high marsh has formed only within the past 100 yr, following increased sedimentation rates in the area. Variations in nutrient and trace metal accumulations over several decades show that pollutants from agricultural runoff and wastewater discharge are stored to a greater extent in high-marsh than in low-marsh sediments. Greater accumulation rates in the high marsh are probably related to its greater sedimentary organic carbon concentration.  相似文献   
3.
The availability of suspended sediments will be a dominant factor influencing the stability of tidal wetlands as sea levels rise. Watershed-derived sediments are a critical source of material supporting accretion in many tidal wetlands, and recent declines in wetland extent in several large river delta systems have been attributed in part to declines in sediment delivery. Little attention has been given, however, to changes in sediment supply outside of large river deltas. In this study, significant declines in suspended sediment concentrations (SSCs) over time were observed for 25 of 61 rivers examined that drain to the East and Gulf Coasts of the USA. Declines in fluvial SSC were significantly correlated with increasing water retention behind dams, indicating that human activities play a role in declining sediment delivery. There was a regional pattern to changes in fluvial sediment, and declines in SSCs were also significantly related to rates of relative sea level rise (RSLR) along the coast, such that wetlands experiencing greater RSLR also tend to be receiving less fluvial sediment. Tidal wetlands in the Mid-Atlantic, Mississippi River Delta, and Texas Gulf especially may become increasingly vulnerable due to rapid RSLR and reductions in sediment. These results also indicate that past rates of marsh accretion may not be indicative of potential future accretion due to changes in sediment availability. Declining watershed sediment delivery to the coastal zone will limit the ability of tidal marshes to keep pace with rising sea levels in some coastal systems.  相似文献   
4.
Historic land use in the Chesapeake Bay drainage basin induced large fluxes of fluvial sediment to subestuarine tributaries. Stratigraphic and palaeoecologic analyses of deltaic deposits may be used to infer changes on the landscape, but are not sufficient to quantify past sediment supply. When viewed as an inverse boundary‐value problem, reconstruction of the sediment supply function may be achieved by combining deltaic sedimentation chronologies with an equation governing delta progradation. We propose that the diffusion equation is appropriate for simulating delta progradation and obtaining the sediment supply function provided a suitable diffusion constant (D) can be determined. Three new methods for estimating D are presented for the case of estuarine deltas. When the inverse boundary‐value technique was applied to Otter Point Creek, a tidal freshwater delta at the head of Bush River in upper Chesapeake Bay, D values ranged from 3763 to 6199 m2 a?1. Delta growth simulations showed a 1740–1760 initial pulse, a 1760–1780 erosive/redistributive interval, a 1780–1920 growth period, and a 1920‐present erosive/redistributive era. Coupling of simulated delta elevations with an empirical plant habitat predictive equation allowed for comparison of predicted versus actual relative habitat areas. Also, the model yielded reconstructed watershed erosion rates and stream suspended sediment concentrations that could be useful for development of water quality regulations. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
5.
Tidal freshwater marshes are critical buffers that exist at the interface between watersheds and estuaries. Little is known about the physical dynamics of tidal freshwater marsh evolution. Over a 21-mo period, July 1995 to March 1997, measurements were made of biweekly sediment deposition at 23 locations in a 3.8-ha tidal freshwater marsh in the Bush River subestuary of the upper Chesapeake Bay. Biweekly accumulation showed high spatial and temporal variability, ranging from ?0.28 g cm?2 to 1.15 g cm?2. Spatial variability is accounted for by habitat differences including plant associations, elevation, and hydrology. Temporal variability is accounted for by interannual climate variability, the growth cycles of marsh plants, stream-marsh interactions, forest-marsh interactions, and animal activity.  相似文献   
6.
An open problem that arises when using modern iterative linear solvers, such as the preconditioned conjugate gradient method or Generalized Minimum RESidual (GMRES) method, is how to choose the residual tolerance in the linear solver to be consistent with the tolerance on the solution error. This problem is especially acute for integrated groundwater models, which are implicitly coupled to another model, such as surface water models, and resolve both multiple scales of flow and temporal interaction terms, giving rise to linear systems with variable scaling. This article uses the theory of "forward error bound estimation" to explain the correspondence between the residual error in the preconditioned linear system and the solution error. Using examples of linear systems from models developed by the US Geological Survey and the California State Department of Water Resources, we observe that this error bound guides the choice of a practical measure for controlling the error in linear systems. We implemented a preconditioned GMRES algorithm and benchmarked it against the Successive Over-Relaxation (SOR) method, the most widely known iterative solver for nonsymmetric coefficient matrices. With forward error control, GMRES can easily replace the SOR method in legacy groundwater modeling packages, resulting in the overall simulation speedups as large as 7.74×. This research is expected to broadly impact groundwater modelers through the demonstration of a practical and general approach for setting the residual tolerance in line with the solution error tolerance and presentation of GMRES performance benchmarking results.  相似文献   
7.
Measurements of groundwater-dissolved inorganic nitrogen (nitrate?+?nitrite?+?ammonia) and phosphate concentrations were combined with recent, radium-based, submarine groundwater discharge (SGD) fluxes and prior estimates of SGD determined from Darcy’s Law, a hydrologic model, and total recharge to yield corresponding SGD nutrient fluxes to Ninigret, Point Judith, Quonochontaug, and Winnapaug ponds, located in southern Rhode Island. Results range from 80 to279 mmol N m?2 year?1 and 4 to 15 mmol P m?2 year?1 for Ninigret, 48 to 265 mmol N m?2 year?1 and 4 to 23 mmol P m?2 year?1 for Point Judith, 31 to 62 mmol N m?2 year?1 and 1 to 2 mmol P m?2 y?1 for Quonochontaug, and 668 to 1,586 mmol N m?2 year?1 and 29 to 70 mmol P m?2 year?1 for Winnapaug ponds, respectively. On a daily basis, the SGD supply of dissolved inorganic nitrogen and phosphorus is estimated to represent ~1–6 % of the total amount of these nutrients in surface waters of Ninigret, Point Judith, and Quonochontaug ponds and up to 84 and 17 % for Winnapaug, respectively, which may reflect a greater SGD nutrient supply to this pond because of the proximity of fertilized golf courses. With regard to the total external input of these essential nutrients, SGD represents 29–45 % of dissolved inorganic nitrogen input to Ninigret, Point Judith, and Quonochontaug ponds and as much as 93 % for Winnapaug pond. For phosphorus, the contribution from SGD represents 59–85 % of the total external input for Ninigret, Point Judith, and Quonochontaug ponds and essentially all of the phosphorus input to Winnapaug pond. Estimated rates of primary productivity potentially supported by the average supply of dissolved inorganic nitrogen from SGD range from 10 g C m?2 year?1 for Ninigret, 13 g C m?2 year?1 for Point Judith, 4 g C m?2 year?1 for Quonochontaug, and as high as 84 g C m?2 y?1 for Winnapaug pond. The imputed SGD-derived rates of primary productivity represent 4–9 % of water column primary production for Ninigret, Point Judith, and Quonochontaug ponds, and 74 % for Winnapaug pond, a result that is reasonably comparable to several other coastal environments where estimates of SGD nutrient supply have been reported. The implication is that SGD represents an ecologically significant source of dissolved nutrients to the coastal salt ponds of southern Rhode Island and, by inference, other coastal systems.  相似文献   
8.
The scarcity of historical individual-level data makes understanding historic land use decisions and the influence of physiochemical gradients on these decisions difficult. Here, we present several measures of early property agricultural quality based on commonly available data, including elevation and soil type. These analyses demonstrate the influence of physiochemical gradients on initial land division patterns in the Gywnns Falls watershed (Baltimore, Maryland). Moreover, we examine the influence of the template created by early property decisions on continuing human-driven landscape dynamics. This influence is illustrated by 1900-era forest cover patterns, park locations, and modern transportation networks.  相似文献   
9.
Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational power, and incorporation of uncertainty. Coupled hydrodynamic-ecological models have been used to assess ecosystem processes and interactions, simulate future scenarios, and evaluate remedial actions in response to eutrophication, habitat loss, and freshwater diversion. The need to couple hydrodynamic and ecological models to address research and management questions is clear because dynamic feedbacks between biotic and physical processes are critical interactions within ecosystems. In this review, we present historical and modern perspectives on estuarine hydrodynamic and ecological modeling, consider model limitations, and address aspects of model linkage, skill assessment, and complexity. We discuss the balance between spatial and temporal resolution and present examples using different spatiotemporal scales. Finally, we recommend future lines of inquiry, approaches to balance complexity and uncertainty, and model transparency and utility. It is idealistic to think we can pursue a “theory of everything” for estuarine models, but recent advances suggest that models for both scientific investigations and management applications will continue to improve in terms of realism, precision, and accuracy.  相似文献   
10.
The relatively wide KwaZulu-Natal Bight between St Lucia and Durban on the north-east shelf of South Africa is characterised by several circulation features driven by the Agulhas Current, wind and coastal inputs. A large multidisciplinary programme investigated the sources and relative influences of nutrients on the shelf. Within this, and to address a critical knowledge gap, this study describes macrobenthic (<1 mm) composition and frequency from 16 stations, assigned amongst four oceanographic focus areas. The areas were predetermined across the disciplines to represent upwelling, outwelling and a semi-persistent eddy, with nutrients and primary productivity being measured at each. Environmental variables such as sediment distribution, sediment TOC and bottom water physico-chemistry were determined at a significantly larger spatial scale. Our study postulated that oceanographic focus areas support significantly different macrobenthic assemblages, and that composition and relative distribution is due to measurable habitat attributes at each. Macrofauna were relatively abundant and particularly rich at >1 000 taxa. Annelida, Arthropoda, Mollusca, Echinodermata, Sipuncula and Cnidaria (>50 taxa each) were the dominant macrobenthic groups in the bight. Annelida were dominated by the polychaete families Spionidae, Terrebelidae and Cirratullidae, which were generally associated with outwelling and a mud depocentre off the Thukela River. Two unique and distinctive assemblages were found, one in the Thukela Mouth focus area and another on the midshelf between Thukela and Durban. The latter is influenced by poorly sorted, coarse sand and with probable influences from the Durban Eddy. There assemblages were abundant, rich and specific to this habitat. Correlation, PERMANOVA and CAP analyses showed assemblage fidelity to the focus areas. Medium sand, fine sand, mud and the variance of overall sediment type were the habitat drivers underlying macrofaunal abundance distributions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号