首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1375篇
  免费   68篇
  国内免费   9篇
测绘学   43篇
大气科学   83篇
地球物理   333篇
地质学   440篇
海洋学   188篇
天文学   250篇
综合类   6篇
自然地理   109篇
  2021年   13篇
  2020年   23篇
  2019年   19篇
  2018年   27篇
  2017年   36篇
  2016年   42篇
  2015年   40篇
  2014年   40篇
  2013年   66篇
  2012年   47篇
  2011年   68篇
  2010年   73篇
  2009年   78篇
  2008年   57篇
  2007年   64篇
  2006年   62篇
  2005年   45篇
  2004年   54篇
  2003年   46篇
  2002年   33篇
  2001年   25篇
  2000年   33篇
  1999年   20篇
  1998年   35篇
  1997年   21篇
  1996年   13篇
  1995年   14篇
  1994年   18篇
  1993年   17篇
  1992年   19篇
  1991年   14篇
  1990年   6篇
  1989年   10篇
  1988年   7篇
  1987年   17篇
  1986年   7篇
  1985年   24篇
  1984年   36篇
  1983年   17篇
  1982年   15篇
  1981年   24篇
  1980年   15篇
  1979年   12篇
  1978年   15篇
  1977年   12篇
  1976年   15篇
  1975年   11篇
  1974年   7篇
  1973年   11篇
  1971年   5篇
排序方式: 共有1452条查询结果,搜索用时 31 毫秒
1.
2.
尽管语法在交际教学法鼎盛时期一度遭到冷遇,但现在又重新被英语语言教学所接纳,作为一种新的语法教学方式,发现原则综合了传统归纳发和演绎法的长处,概述了发现原则的理论依据,指出发现原则旨在鼓励学习者积极参与而非被动接受,符合当前认知主义对二语学习的认识。  相似文献   
3.
A coupling procedure between a climate model of intermediate complexity (CLIMBER-2.3) and a 3-dimensional thermo-mechanical ice-sheet model (GREMLINS) has been elaborated. The resulting coupled model describes the evolution of atmosphere, ocean, biosphere, cryosphere and their mutual interactions. It is used to perform several simulations of the Last Deglaciation period to identify the physical mechanisms at the origin of the deglaciation process. Our baseline experiment, forced by insolation and atmospheric CO2, produces almost complete deglaciation of past northern hemisphere continental ice sheets, although ice remains over the Cordilleran region at the end of the simulation and also in Alaska and Eastern Siberia. Results clearly demonstrate that, in this study, the melting of the North American ice sheet is critically dependent on the deglaciation of Fennoscandia through processes involving switches of the thermohaline circulation from a glacial mode to a modern one and associated warming of the northern hemisphere. A set of sensitivity experiments has been carried out to test the relative importance of both forcing factors and internal processes in the deglaciation mechanism. It appears that the deglaciation is primarily driven by insolation. However, the atmospheric CO2 modulates the timing of the melting of the Fennoscandian ice sheet, and results relative to Laurentide illustrate the existence of threshold CO2 values, that can be translated in terms of critical temperature, below which the deglaciation is impeded. Finally, we show that the beginning of the deglaciation process of the Laurentide ice sheet may be influenced by the time at which the shift of the thermohaline circulation from one mode to the other occurs.  相似文献   
4.
5.
The instantaneous structure of planetary exospheres is determined by the time history of energy dissipation, chemical, and transport processes operative during a prior time interval set by intrinsic atmospheric time scales. The complex combination of diurnal and magnetospheric activity modulations imposed on the Earth's upper atmosphere no doubt produce an equally complex response, especially in hydrogen, which escapes continuously at exospheric temperatures. Vidal-Madjar and Thomas (1978) have discussed some of the persistent large scale structure which is evident in satellite ultraviolet observations of hydrogen, noting in particular a depletion at high latitudes which is further discussed by Thomas and Vidal-Madjar (1978). The latter authors discussed various causes of the H density depletion, including local neutral temperature enhancements and enhanced escape rates due to polar wind H+ plasma flow or high latitude ion heating followed by charge exchange. We have reexamined the enhancement of neutral escape by plasma effects including the recently observed phenomenon of low altitude transverse ion acceleration. We find that, while significant fluxes of neutral H should be produced by this phenomenon in the auroral zone, this process is probably insufficient to account for the observed polar depletion. Instead, the recent exospheric temperature measurements from the Dynamics Explorer-2 spacecraft suggest that neutral heating in and near the high latitude cusp may be the major contributor to depleted atomic hydrogen densities at high latitudes.  相似文献   
6.
7.
Moore  M. H.  Hudson  R. L.  Ferrante  R. F. 《Earth, Moon, and Planets》2003,92(1-4):291-306
Near the inner edge of the Edgeworth-Kuiper Belt (EKB) are Pluto and Charon, which are known to have N2- and H2O-dominated surface ices, respectively. Such non-polar and polar ices, and perhaps mixtures of them, also may be present on other trans-Neptunian objects. Pluto, Charon, and all EKB objects reside in a weak, but constant UV-photon and energetic ion radiation environment that drives chemical reactions in their surface ices. Effects of photon and ion processing include changes in ice composition, volatility, spectra, and albedo, and these have been studied in a number of laboratories. This paper focuses on ice processing by ion irradiation and is aimed at understanding the volatiles, ions, and residues that may exist on outer solar system objects. We summarize radiation chemical products of N2-rich and H2O-rich ices containing CO or CH4, including possible volatiles such as alcohols, acids, and bases. Less-volatile products that could accumulate on EKB objects are observed to form in the laboratory from acid-base reactions, reactions promoted by warming, or reactions due to radiation processing of a relatively pure ice (e.g., CO → C3O2). New IR spectra are reported for the 1–5 mu;m region, along with band strengths for the stronger features of carbon suboxide, carbonic acid, the ammonium and cyanate ions, polyoxymethylene, and ethylene glycol. These six materials are possible contributors to EKB surfaces, and will be of interest to observers and future missions.  相似文献   
8.
To investigate the equation of state of -MnS at high pressure and the possibility of a phase transition, the compression curve was measured at 298 K from 0 to 21 GPa using powder x-ray diffraction with a diamond anvil cell. The compression data are fit to a thirdorder Birch-Murnaghan equation of state, with parameters K 0 = 72(2) GPa and K 0 = 4.2(13). To compare present results with previous work, the data sets from three previous investigations (Clendenen and Drickamer 1966; Wakabayashi et al. 1968; Kraft and Greuling 1988) are refit to a Birch-Murnaghan equation of state. In the low pressure region (P < 10=" gpa),=" the=" results=" of=" clendenen=" and=" drickamer=" (1966)=" agree=" with=" the=" present=" data;=" however=" the=" results=" of=" wakbayashi=" et=" al.=" (1968)=" differ=" by=" more=" than=" 10%.=" a=" greater=" discrepancy=" between=" the=" present=" and=" previous=" results=" occurs=" above=" 10=" gpa.=" kraft=" and=" greuling=" (1988)=" reported=" a=" structure=" transition=" at=" 7=" gpa,=" and=" clendenen=" and=" drickamer=" (1966)=" observed=" a=" structure=" distortion=" at=" approximately=" 10=" gpa;=" the=" present=" data=" show=" no=" evidence=" of=" either=" transition,=" and=" are=" well=" fit=" by=" a=" single=" equation=" of=" state=" from=" 0=" to=" 21=" gpa.=" nonhydrostatic=" stress=" is=" discussed=" as=" one=" possibility=" for=" the=">  相似文献   
9.
Siliceous hot spring deposits from Steamboat Springs, Nevada, U.S.A., record a complex interplay of multiple, changing, primary environmental conditions, fluid overprinting and diagenesis. Consequently these deposits reflect dynamic geologic and geothermal processes. Two surface sinters were examined—the high terrace, and the distal apron-slope, as well as 13.11 m (43 ft) of core material from drill hole SNLG 87-29. The high terrace sinter consists of vitreous and massive-mottled silica horizons, while the distal deposit and core comprise dominantly porous, indurated fragmental sinters. Collectively, the three sinter deposits archive a complete sequence of silica phase diagenetic minerals from opal-A to quartz. X-ray powder diffraction analyses and infrared spectroscopy of the sinters indicate that the distal apron-slope consists of opal-A and opal-A/CT mineralogy; the core yielded opal-A/CT and opal-CT with minor opal-A; and the high terrace constitutes opal-C, moganite, and quartz. Mineralogical maturation of the deposit produced alternating nano–micro–nano-sized silica particle changes. Based on filament diameters of microbial fossils preserved within the sinter, discharging thermal outflows fluctuated between low-temperatures (< 35 °C, coarse filaments) and mid-temperatures ( 35–60 °C, fine filaments). Despite transformation to quartz, primary coarse and fine filaments were preserved in the high terrace sinter. AMS 14C dating of pollen from three horizons within core SNLG 87-29, from depths of 8.13 to 8.21 m (26′8″ to 26′11″), 10.13 to 10.21 m (33′3″ to 33′6″), and 14.81 to 14.88 m (48′7″ to 48′10″), yielded dates of 8684 ± 64 years, 11,493 ± 70 years and 6283 ±60 years, respectively. In the upper section of the core, the stratigraphically out-of-sequence age likely reflects physical mixing of younger sinter with quartzose sinter fragments derived from the high terrace. Within single horizons, mineralogical and morphological components of the sinter matrix were spatially patchy. Overall, the deposit was modified by sub-surface flow of alkali-chloride thermal fluids depositing a second generation of silica, and periodically, by acidic steam condensate formed during periods when the water table was low. Local faulting produced considerable fracturing of the sinter. Hence, the Steamboat Springs sinter experienced a complex history of primary and secondary hydrothermal, geologic and diagenetic events, and their inter-relationships and effects are locked within the physical, chemical and biological signatures of the deposit.  相似文献   
10.
Serpentine soils derived from the weathering of ultramafic rocks and their metamorphic derivatives (serpentinites) are chemically prohibitive for vegetative growth. Evaluating how serpentine vegetation is able to persist under these chemical conditions is difficult to ascertain due to the numerous factors (climate, relief, time, water availability, etc.) controlling and affecting plant growth. Here, the uptake, incorporation, and distribution of a wide variety of elements into the biomass of serpentine vegetation has been investigated relative to vegetation growing on an adjacent chert-derived soil. Soil pH, electrical conductivity, organic C, total N, soil extractable elements, total soil elemental compositions and plant digestions in conjunction with spider diagrams are utilized to determine the chemical relationships of these soil and plant systems. Plant available Mg and Ca in serpentine soils exceed values assessed in chert soils. Magnesium is nearly 3 times more abundant than Ca in the serpentine soils; however, the serpentine soils are not Ca deficient with Ca concentrations as high as 2235 mg kg−1. Calcium to Mg ratios (Ca:Mg) in both serpentine and chert vegetation are greater than one in both below and above ground tissues. Soil and plant chemistry analyses support that Ca is not a limiting factor for plant growth and that serpentine vegetation is actively moderating Mg uptake as well as tolerating elevated concentrations of bioavailable Mg. Additionally, results demonstrate that serpentine vegetation suppresses the uptake of Fe, Cr, Ni, Mn and Co into its biomass. The suppressed uptake of these metals mainly occurs in the plants’ roots as evident by the comparatively lower metal concentrations present in above ground tissues (twigs, leaves and shoots). This research supports earlier studies that have suggested that ion uptake discrimination and ion suppression in the roots are major mechanisms for serpentine vegetation to tolerate the chemistry of serpentine soils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号