首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
地球物理   5篇
地质学   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2015年   1篇
  2007年   1篇
排序方式: 共有6条查询结果,搜索用时 218 毫秒
1
1.
We introduce a new representation of coupled solute and water age dynamics at the catchment scale, which shows how the contributions of young runoff waters can be directly referenced to observed water quality patterns. The methodology stems from recent trends in hydrologic transport that acknowledge the dynamic nature of streamflow age and explores the use of water age fractions as an alternative to the mean age. The approach uses a travel time‐based transport model to compute the fractions of streamflow that are younger than some thresholds (e.g., younger than a few weeks) and compares them to observed solute concentration patterns. The method is here validated with data from the Hubbard Brook Experimental Forest during spring 2008, where we show that the presence of water younger than roughly 2 weeks, tracked using a hydrologic transport model and deuterium measurements, mimics the variation in dissolved silicon concentrations. Our approach suggests that an age–discharge relationship can be coupled to classic concentration–discharge relationship, to identify the links between transport timescales and solute concentration. Our results highlight that the younger streamflow components can be crucial for determining water quality variations and for characterizing the dominant hydrologic transport dynamics.  相似文献   
2.
Wetlands play an important role in watershed eco-hydrology. The occurrence and distribution of wetlands in a landscape are affected by the surface topography and the hydro-climatic conditions. Here, we propose a minimalist probabilistic approach to describe the dynamic behaviour of wetlandscape attributes, including number of inundated wetlands and the statistical properties of wetland stage, surface area, perimeter, and storage volume. The method relies on two major assumptions: (a) wetland bottom hydrologic resistance is negligible; and (b) groundwater level is parallel to the mean terrain elevation. The approach links the number of inundated wetlands (depressions with water) to the distribution of wetland bottoms and divides, and the position of the shallow water table. We compared the wetlandscape attribute dynamics estimated from the probabilistic approach to those determined from a parsimonious hydrologic model for groundwater-dominated wetlands. We test the reliability of the assumptions of both models using data from six cypress dome wetlands in the Green Swamp Wildlife Management Area, Florida. The results of the hydrologic model for groundwater-dominated wetlands showed that the number of inundated wetlands has a unimodal dependence on the groundwater level, as predicted by the probabilistic approach. The proposed models provide a quantitative basis to understand the physical processes that drive the spatiotemporal hydrologic dynamics in wetlandscapes impacted by shallow groundwater fluctuations. Emergent patterns in wetlandscape hydrologic dynamics are of key importance not only for the conservation of water resources, but also for a wide range of eco-hydrological services provided by connectivity between wetlands and their surrounding uplands.  相似文献   
3.
The present study explores the effect of salinity and dissolved organic carbon (DOC) gradients on the stability and reactivity of titanium dioxide nanoparticle (TiO2-NP) agglomerates in ambient water from the Lagoon of Venice and their possible effect on nauplii sampled at the same locations. In all ambient water samples, TiO2-NPs formed rapidly micrometre-sized agglomerates. The increase in the salinity and concomitant decrease in DOC content induced the formation of larger agglomerates, with z-average hydrodynamic diameter increasing with TiO2-NP concentration and exposure duration. Under the studied conditions, ζ-potential exhibited negative values. In line with agglomeration results, enhancement of the salinity and lower DOC resulted in less negative ζ-potential with close to 0 values in the dispersions of 100 mg L?1 TiO2-NPs in sea water. Two-hour exposure to micrometre-sized agglomerates of TiO2-NPs resulted in an increase in the fluorescence of propidium iodide (PI) stained nauplii in comparison with unexposed controls, but had no effect at 24-h exposure. The increase in nauplii-associated PI fluorescence was more noticeable in dispersions containing 100 mg L?1 than those containing 10 mg L?1 TiO2-NPs, suggesting membrane permeability alteration in a concentration-dependent manner. However, the PI staining results have to be interpreted with caution because of the possible dye binding to the nauplii surface without penetration of cellular membrane. The effect of TiO2-NPs on nauplii was more pronounced at higher salinity and decreased with increasing DOC concentrations at 2 h, while no trends were found at 24-h exposure, as well as exposure to 100 mg L?1 TiO2-NPs.  相似文献   
4.
We discuss techniques to represent groundwater flow in carbonate aquifers using the three existing modeling approaches: equivalent porous medium, conduit network, and discrete fracture network. Fractures in faulted stratigraphic successions are characterized by dominant sets of sub-vertical joints. Grid rotation is recommended using the equivalent porous medium to match higher hydraulic conductivity with the dominant orientation of the joints. Modeling carbonate faults with throws greater than approximately 100 m is more challenging. Such faults are characterized by combined conduit-barrier behavior. The barrier behavior can be modeled using the Horizontal Flow Barrier Package with a low-permeability vertical barrier inserted to represent the impediment of horizontal flow in faults characterized by sharp drops of the piezometric surface. Cavities can occur parallel to the strike of normal faults generating channels for the groundwater. In this case, flow models need to account for turbulence using a conduit network approach. Channels need to be embedded in an equivalent porous medium due to cavities a few centimeters large, which are present in carbonate aquifers even in areas characterized by low hydraulic gradients. Discrete fracture network modeling enables representation of individual rock discontinuities in three dimensions. This approach is used in non-heavily karstified aquifers at industrial sites and was recently combined with the equivalent porous medium to simulate diffusivity in the matrix. Following this review, we recommend that the future research combines three practiced modeling approaches: equivalent porous medium, discrete fracture network, and conduit network, in order to capture structural and flow aspects in the modeling of groundwater in carbonate rocks.  相似文献   
5.
Streamflow variability in space and time critically affects anthropic water uses and ecosystem services. Unfortunately, spatiotemporal patterns of flow regimes are often unknown, as discharge measurements are usually recorded at a limited number of hydrometric stations unevenly distributed along river networks. Advances in understanding the physical processes that control the spatial patterns of river flows are therefore necessary to predict water availability at ungauged locations or to extrapolate pointwise streamflow observations. This work explores the use of the spatial correlation of river flows as a metric to quantify the similarity between hydrological responses of two catchments. Following a stochastic framework, 340,000 cross‐correlations between pairs of daily streamflows time series are predicted at a seasonal timescale across the contiguous United States using 413 catchments of the MOPEX dataset. Model predictions of streamflow correlation obtained in absence of run‐off information are successfully used to identify catchment outlets sharing similar discharge dynamics and flow regimes across a broad range of geomorphoclimatic conditions, without relying on calibration. The selection of reference streamgauges based on predicted streamflow correlation generally outperforms the selection based on spatial proximity, especially as the density of available gauged sections decreases. Interestingly, correlated outlets share a broad spectrum of hydrological signatures (mean discharge, flow variability, and recession properties), suggesting that catchments forced by analogous frequency and intensity of effective rainfall events might exhibit common geomorphoecological traits leading to similar hydrological responses. The proposed framework provides a physical basis to assist the regionalization of flow dynamics and to interpret the spatial variability of flow regimes along stream networks.  相似文献   
6.
The industrial zone of Porto Marghera is one the most important "contaminated sites of national interest" (SIN) in Italy, being identified as an area of high environmental risk. The site includes a wide shallow water area of the Venice Lagoon extending toward the city of Venice, which was investigated in order to acquire information on the pollutant level and distribution. Grain-size, heavy metal, nutrient, and organic micropollutant concentrations were determined in the surface sediment layers (0-5 and 5-10 cm depths) of 51 sites. A generally low contamination was found, except for Hg concentration, which increases the toxicological risk in most of the sites of the area, according to the results of a comparison with Sediment Quality Guidelines. A heavy pollution fingerprint (Cd, Cu, Hg, Pb, and Zn up to 15.2, 257, 11.9, 248, and 3010 mg/kg d.w., respectively) was instead found near the Tresse Island, which is ascribed to the spill of pollutants from the contaminated sediment disposed therein. Grain-size and heavy metal profiles down to a depth of 40 cm in eight selected sites, finally show a probable decrease of the pollution affecting the area in recent years.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号