首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
大气科学   3篇
地球物理   6篇
地质学   1篇
自然地理   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2008年   3篇
  2002年   3篇
  1990年   1篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
This paper presents results recently obtained for generating site-specific ground motions needed for design of critical facilities. The general approach followed in developing these ground motions using either deterministic or probabilistic criteria is specification of motions for rock outcrop or very firm soil conditions followed by adjustments for site-specific conditions. Central issues in this process include development of appropriate attenuation relations and their uncertainties, differences in expected motions between Western and Eastern North America, and incorporation of site-specific adjustments that maintain the same hazard level as the control motions, while incorporating uncertainties in local dynamic material properties. For tectonically active regions, such as the Western United States (WUS), sufficient strong motion data exist to constrain empirical attenuation relations for M up to about 7 and for distances greater than about 10–15 km. Motions for larger magnitudes and closer distances are largely driven by extrapolations of empirical relations and uncertainties need to be substantially increased for these cases.

For the Eastern United States (CEUS), due to the paucity of strong motion data for cratonic regions worldwide, estimation of strong ground motions for engineering design is based entirely on calibrated models. The models are usually calibrated and validated in the WUS where sufficient strong motion data are available and then recalibrated for applications to the CEUS. Recalibration generally entails revising parameters based on available CEUS ground motion data as well as indirect inferences through intensity observations. Known differences in model parameters such as crustal structure between WUS and CEUS are generally accommodated as well. These procedures are examined and discussed.  相似文献   

2.
3.
A large reinforced concrete structure supported on piles extending to bedrock is evaluated using a seismic soil–structure interaction analysis. The physical structure, the supporting pile system, analysis model and analytical methodology used are described. Important considerations in the design of the foundation pile system using the seismic analysis loadings and deformations are discussed.  相似文献   
4.
This study presents spatiotemporally-resolved measurements of surface shear-stress τ s in live plant canopies and rigid wooden cube arrays to identify the sheltering capability against sediment erosion of these different roughness elements. Live plants have highly irregular structures that can be extremely flexible and porous resulting in considerable changes to the drag and flow regimes relative to rigid imitations mainly used in other wind-tunnel studies. Mean velocity and kinematic Reynolds stress profiles show that well-developed natural boundary layers were generated above the 8 m long wind-tunnel test section covered with the roughness elements at four different roughness densities (λ = 0, 0.017, 0.08, 0.18). Speed-up around the cubes caused higher peak surface shear stress than in experiments with plants at all roughness densities, demonstrating the more effective sheltering ability of the plants. The sheltered areas in the lee of the plants are significantly narrower with higher surface shear stress than those found in the lee of the cubes, and are dependent on the wind speed due to the plants ability to streamline with the flow. This streamlining behaviour results in a decreasing sheltering effect at increasing wind speeds and in lower net turbulence production than in experiments with cubes. Turbulence intensity distributions suggest a suppression of horseshoe vortices in the plant case. Comparison of the surface shear-stress measurements with sediment erosion patterns shows that the fraction of time a threshold skin friction velocity is exceeded can be used to assess erosion of, and deposition on, that surface.  相似文献   
5.
This paper presents a review of recent experimental and numerical studies which deal with the analysis of form-induced stress in rough wall turbulent boundary layers. The aim of the paper is to assess the importance of this stress for various rough wall geometries and flow conditions. Analysis of the significance of form-induced stress is first performed by comparing its magnitude with the magnitude of Reynolds stress for each data set available in literature. Then, by selecting a special set of data, we analyze the comparison between the gradients of both stresses. We point out that the comparison of stress gradients gives a different perspective on the role of form-induced stress in rough wall boundary layers.  相似文献   
6.
Abstract

Preferential flow pathways in a fractured aquifer may yield abrupt reductions of the water velocity in a well. We propose a new device for measuring low (5–13 cm d-1) velocities in wells originating from fractures at different depths. The presented flowmeter has been applied in a well in the Bari (southern Italy) fractured aquifer. In the same well, the horizontal flowmeter velocity (9.6 cm d-1) at 0.5 m depth was compared with velocity (8 cm d-1) derived from a field tracer test, providing a value 16.5% higher. Moreover, the flowmeter measurements at 1.5 m depth gave a horizontal velocity of 7.2 cm d-1, which is 11% less than water flow velocity estimated from the field test. The new flowmeter implements the tracer point-dilution method in a plastic (PVC) pipe by causing the water flow to pass through an artificial filter. Laboratory calibration tests have confirmed the good performance of the proposed flowmeter technique, even for water flow up to 300 cm d-1. The flowmeter was sensitive to 0.1 cm d-1, with a detection limit of 1.5 cm d-1, i.e. half the measurable flow velocity of existing flowmeters in wells.

Editor D. Koutsoyiannis; Associate editor S. Grimaldi  相似文献   
7.
Experimental studies have been carried out in a fractured coastal aquifer of the Salento region (Nardò, Italy), which has been subjected to 12,000 m3/day of treated municipal waste water injected into a natural sinkhole since 1991. The analytical parameters of ground water sampled in 30 monitoring wells in the area down gradient from the sinkhole, taking into account the direction of ground water flow, have been compared before and after injection. The water table mound (1.5 m), the reduction of sea water extent (2 km), and the spreading of injected pollutants were evaluated by means of a mathematical model. The predicted values in the monitoring wells were adjusted to inorganic nitrogen biodegradation using transformation rates developed in laboratory tests. After 10 years, the injection has increased the volume of the available resource for agricultural and drinking water use, without any notable decrease in the preexisting ground water quality. Moreover, to preserve water resources from pollution, the mathematical model allowed the maximum constituent concentrations (standards) in waste water reclamation for recharge to be identified. A precautionary area around the sinkhole was also defined so that withdrawal prohibition could be implemented to avoid risks to human health.  相似文献   
8.
Aerodynamic Roughness Length of Fresh Snow   总被引:1,自引:1,他引:0  
This study presents the results from a series of wind-tunnel experiments designed to investigate the aerodynamic roughness length z 0 of fresh snow under no-drift conditions. A two-component hot-film anemometer was employed to obtain vertical profiles of velocity statistics in a zero pressure gradient turbulent boundary layer for flow over naturally deposited snow surfaces. The roughness of these snow surfaces was measured by means of digital photography to capture characteristic length scales that can be related to z 0. Our results show that, under aerodynamically rough conditions, the mean value of the roughness length for fresh snow is \({\langle{z}_{0}\rangle= 0.24}\) mm with a standard deviation σ(z 0) = 0.05 mm. In this study, we show that variations in z 0 are associated with variations in the roughness geometry. The roughness measurements suggest that the estimated values of z 0 are consistent with the presence of irregular roughness structures that develop during snowfalls that mimic ballistic deposition processes.  相似文献   
9.
On Shear-Driven Ventilation of Snow   总被引:1,自引:1,他引:0  
A series of experiments have been made in a wind tunnel to investigate the ventilation of snow by shear. We argue that the zero-plane displacement can be used as a convenient indicator of ventilation, and that this can be obtained from measurements of mean velocity profiles in conditions of zero pressure gradient. Measurements made over a natural snow surface show a zero-plane displacement depth of less than 5 mm, but practical considerations preclude extensive use of snow for these measurements. Instead, the influence of permeability is investigated using reticulated foams in place of snow. We demonstrate that the foam and snow have similar structure and flow-relevant properties. Although the surface of the foam is flat, the roughness lengths increase by two orders of magnitude as the permeability increases from 6 × 10−9 to 160 × 10−9 m2. The zero-plane displacement for the least permeable foams is effectively zero, but more than 15 mm for the most permeable foams. Our data compare well to the few studies available in the literature. By analogy to conditions over snow surfaces, we suggest that shear-driven ventilation of snow is therefore limited to the upper few millimetres of snow surfaces.  相似文献   
10.
This paper explores the concept of a macroscopic boundary between turbulent flows above and within rough permeable walls. The macroscopic boundary and the associated conditions for macroscopic flow variables have been thoroughly investigated for laminar, but not for turbulent flows. The literature on laminar flows follows two main conceptual models of the boundary: sharp boundary with step changes in macroscopic variables and gradual boundary with smooth changes of variables. The former approach is usually associated with the two-domain simulation models and the latter one with the single-domain models. This paper presents the derivation of the step conditions for velocity and shear stress at the macroscopic boundary between turbulent boundary layer and turbulent porous media flows. The physical meaning of the main terms in the shear stress condition is discussed in order to clarify the relationship between two-domain and single-domain simulation models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号