首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
地球物理   2篇
  2017年   1篇
  2008年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Physical sedimentology experiments have shown that sulfuric acid solutions may have formed some surface features seen on Mars. Recent data returned from Mars show the presence of jarosite, sulfate salts, hematite, phyllosilicates, and opaline silica, all of which precipitate from some terrestrial sulfuric acid solutions. There is a plethora of geochemical, mineralogical, and sedimentological data indicative of past sulfuric acid systems on Mars, but there has never been a comprehensive study published regarding sulfuric acid as a physical sedimentological agent. In the laboratory, we ran liquids of various compositions over sediments in order to test how these liquids entrain, transport, and deposit sediments. Pure water and concentrated sulfuric acid solutions produced the same general features, such as channels, gullies, and alluvial fans. However, sulfuric acid solutions yielded some distinct sedimentary features not produced by pure water runs. These features, narrow, deeply incised channels of consistent widths, rounded discrete fans, and air bubble “craters”, are similar to some Martian landscape features. These experimental results indicate that acid solutions should be considered a possible sedimentological agent on Mars.  相似文献   
2.
In the absence of eyewitness reports or clear sedimentary structures, it can be difficult to interpret tsunami deposits or reconstruct tsunami inundation patterns. The emplacement dynamics of two historical tsunami deposits were investigated at seven transects in Okains Bay, New Zealand, using a combined geospatial, geomagnetic and sedimentological approach. The tsunami deposits are present as layers of sand and silt intercalated between soils and become finer and thinner with distance inland. The deposits are attributed to the 1960 and possibly the 1868 tsunamis, based on radiometric dating and correlation with historical records. Measurements of Magnetic Fabric (MF: Anisotropy of Magnetic Susceptibility) and particle size were used to reconstruct the evolution of flow dynamics laterally and vertically. A combination of statistical methods, including spatial autocorrelation testing, Spearman's rank order correlation, Principal Component Analysis (PCA) and K‐means cluster analysis, was applied to examine relationships between MF parameters and sediment texture, and infer depositional hydrodynamics. Flow patterns deduced from MF show the estuary channel acted as a conduit for inundation, with flow commonly aligned sub‐perpendicular to the estuary bed. MF and sediment data suggest deposition occurred from settling during laminar flow. Evidence of both uprush and backwash deposition, as well as wave reflection from infrastructure, was found. Statistical analysis of data showed significant relationships between grain size parameters and MF parameters associated with flow speed and magnetic fabric type. PCA and cluster analysis differentiated samples into two primary hydrodynamic groups: (1) samples deposited from laminar flow; and (2) samples deposited close to the limit of inundation, which includes samples deposited further inland, those affected by flow convergence, and those in the upper part of tsunami deposits. This approach has potential as a tool for reconstructing hydrodynamic conditions for palaeotsunamis and by combining spatial and statistical analyses, large‐scale investigations can be more easily performed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号