首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
地球物理   9篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
  2014年   2篇
  2012年   1篇
  2011年   1篇
  2008年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Scaling properties of variable electric fields in the topside ionosphere have been investigated on scales s from ∼30 m to 2 km by FAST electric field observations with sample rate of 512 s−1, in sixteen events of the broadband ELF turbulence. It is shown that down to scales of a few hundred meters, the power of turbulent electric fluctuations is a power law, ∼s α. Scaling index α derived from the slope of logarithmic diagrams (LD) constructed by the discrete wavelet transform of data can be estimated as α = 2.2 ± 0.3, which is close to α estimate earlier reported for scales 1–30 km by electric field observations of the Dynamics Explorer 2 satellite. The behavior of α index is analyzed near the scale of the order of electron inertial length λe = c/ω00 being the electron plasma frequency). At altitudes considered (700–2500 km), λe makes 100–900 m. We demonstrate that at scales ≤λe, a decrease of LD slope and deviation from the power law are typically observed. As pointed out in the discussion, this feature cannot be identified as a transition to the diffusion range, where dissipation of the turbulence occurs.  相似文献   
2.
Different solar wind structures are observed: magnetic clouds (MC), recurrent streams (RS), and regions of their interaction with undisturbed solar wind (Sheath and CIR). Three of these structures, Sheath, CIR, MC, are the sources of geomagnetic storms. We have searched for distinctions in the development of substorm bulges occurring during geomagnetic storms connected with the MC, Sheath and CIR. Solar wind parameters were taken from the Wind spacecraft and the auroral bulge parameters were obtained from the Ultra Violet Imager onboard Polar spacecraft. We determined the dimensions of the auroral bulges, the poleward aurora propagation, and the onset latitude of auroral bulges. It is shown that auroral bulges “geometry” is different for the examined types of storms. In consequence, the ratio between longitudinal and latitudinal sizes is also different.  相似文献   
3.
The energy of precipitating particles that cause auroras can be characterized by the ratio of different atom and molecule emissions in the upper atmospheric layers. It is known that the spectrum of precipitating electrons becomes harder when substorms develop. The ratio of the I 6300 red line to the I 5577 green line was used to determine the precipitating-electron spectrum hardness. The I 6300/I 5577 parameter was used to roughly estimate the electron energy in auroral arcs observed in different zones of the auroral bulge at the bulge poleward edge and within this bulge. The variations in the emission red and green lines in auroral arcs during substorms that occurred in the winter season 2007–2008 and in January 2006 were analyzed based on the zenith photometer and all-sky camera data at the Barentsburg and Longyearbyen (LYR) high-latitude observatories. It has been indicated that the average value of the I 6300/I 5577 emission ratio for arcs within the auroral bulge is larger than this value at the bulge poleward edge. This means that the highest-energy electron precipitation is observed in arcs at the poleward edge of the substorm auroral bulge.  相似文献   
4.
Geomagnetism and Aeronomy - The development of two supersubstorms (i.e., very intense substorms with an amplitude of more than 2000 nT) recorded in the main phase of two consecutive strong magnetic...  相似文献   
5.
Geomagnetism and Aeronomy - The effects of different large-scale solar wind structures on magnetospheric substorms at high geomagnetic latitudes are studied. Two types of high-latitude substorm...  相似文献   
6.
Polar and high latitude substorms and solar wind conditions   总被引:1,自引:0,他引:1  
All substorm disturbances observed in polar latitudes can be divided into two types: polar, which are observable at geomagnetic latitudes higher than 70° in the absence of substorms below 70°, and high latitude substorms, which travel from auroral (<70°) to polar (>70°) geomagnetic latitudes. The aim of this study is to compare conditions in the IMF and solar wind, under which these two types of substorms are observable on the basis of data from meridional chain of magnetometers IMAGE and OMNI database for 1995, 2000, and 2006–2011. In total, 105 polar and 55 high latitude substorms were studied. It is shown that polar substorms are observable at a low velocity of solar wind after propagation of a high-speed recurrent stream during the late recovery phase of a magnetic storm. High latitude substorms, in contrast, are observable with a high velocity of solar wind, increased values of the Bz component of the IMF, the Ey component of the electric field, and solar wind temperature and pressure, when a high-speed recurrent stream passes by the Earth.  相似文献   
7.
Geomagnetism and Aeronomy - The paper gives an analysis of the isolated supersubstorm observed during the main phase of the moderate magnetic storm on May 28, 2011 (SYM/H ~ –95 nT), which was...  相似文献   
8.
The effect of the interplanetary parameters on the latitudinal position of the substorm westward electrojet is studied in the work. The data from the IMAGE chain of magnetic stations and POLAR and WIND satellites for the period close to the solar activity minimum (1995–1996) and for the period of the solar activity maximum (2000) have been used for this purpose. It has been indicated that the electrojet poleward edge reaches, on average, higher latitudes at a higher solar wind velocity and at a larger (B s ) IMF southward component. It has been indicated that the average latitude of the westward electrojet center increases with increasing solar wind velocity and decreases with increasing IMF southward component, as a result of which the electrojet center is, specifically, not observed at high geomagnetic latitudes at large values of the IMF southward component.  相似文献   
9.
Geomagnetism and Aeronomy - This article examines the effect of various large-scale solar-wind structures and streams on the occurrence of a special type of substorms—the so-called...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号