首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  国内免费   1篇
大气科学   1篇
地球物理   4篇
地质学   4篇
  2022年   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2012年   2篇
  2010年   2篇
排序方式: 共有9条查询结果,搜索用时 953 毫秒
1
1.
Various reanalyses have been utilized in numerous climate related researches around the globe, however, there exists considerable biasedness in these products, especially in precipitation and temperature data. The ability of these reanalysis products to simulate the precipitation and temperature patterns is observed to be satisfactory at global scale, while it differs significantly at regional scale, especially over regions of high spatio-temporal heterogeneity such as India. Therefore, it is essential to evaluate the applicability and robustness of reanalyses in climate related research. The annual and seasonal variability in spatio-temporal patterns and trends of precipitation and temperature data, with respect to the IMD gridded data over 34 yrs, are evaluated for six global reanalyses namely, NCEP/NCAR Reanalysis (NCEP R1), NCEP-DOE AMIP-2 Reanalysis (NCEP R2), Climate Forecast System Reanalysis (CFSR), ECMWF Interim Reanalysis (ERA-Interim), Modern Era Retrospective Analysis for Research and Application Land only model (MERRA-Land) and JMA 55-year Reanalysis (JRA-55). The ability of the reanalyses was tested based on several factors such as statistical and categorical indices, spells and trends, for annual and seasonal daily values. Several regional and seasonal differences were observed, particularly over high rainfall regions such as Western Ghats and northeastern India. MERRA-Land is found to give the best results for precipitation over India, which is attributed to the updated forcing data using gauge-based precipitation observations. Similarly, ERA-Interim and JRA-55 exhibit better performance for temperature than other datasets. All reanalyses failed to correctly reproduce the trends in IMD data, for both precipitation and temperature. These observations will provide a better perception on the reliability and applicability of reanalyses for climate and hydrological studies over India.  相似文献   
2.
Barthel  Knut  Daewel  Ute  Pushpadas  Dhanya  Schrum  Corinna  &#;rthun  Marius  Wehde  Henning 《Ocean Dynamics》2012,62(10):1457-1470

This article presents some advantages using a shape-preserving total variation diminishing (TVD) advection scheme in an ecosystem model. The superbee flux-limiter has been used to the second-order Lax–Wendroff advection scheme to make it TVD. We performed simulations for three shelf sea regions with different characteristic time scales, namely, the North Sea, the Barents Sea, and the Baltic Sea. To explore the advantages, we also performed reference runs with the much simpler and computationally cheaper upwind advection scheme. Frontal structures are much better resolved with the TVD scheme. The bottom salinity in the Baltic Sea stays at realistic values throughout the 10-year simulation with the TVD scheme, while with the upwind scheme, it drifts towards lower values and the permanent haline stratification in the Baltic is almost completely eroded within one seasonal cycle. Only when applying TVD for both the vertical and horizontal advections the model succeeded to preserve haline stratification in the decadal simulation. Lower trophic level patterns are far better reproduced with the TVD scheme, and for the estimated cod larval survival, the advantages seem to be even stronger. Simulations using the TVD-derived prey fields identified distinct regions such as Dogger Bank to favor potential larvae survival (PLS), which did not appear as particularly favorable in the upstream simulations. The TVD scheme needs about 25 % more time on the central processing unit (CPU) in case of a pure hydrodynamic setup with only two scalar state variables (Barents Sea application). The additional CPU time cost increases for a coupled physical–biological model application with a large number of state variables. However, this is more than compensated by all the advantages found, and, hence, we conclude that it is worthwhile to use the TVD scheme in our ecosystem model.

  相似文献   
3.
Dhanya  J  Sreejaya  K P  Raghukanth  S T G 《Journal of Seismology》2022,26(5):1051-1075
Journal of Seismology - This article focuses on estimating the seismic recurrence parameters of India and adjoining regions based on a comprehensive catalogue assimilated from various sources. The...  相似文献   
4.
5.
Fluoride contamination in groundwater resources of Alleppey,southern India   总被引:1,自引:0,他引:1  
Alleppey is one of the thickly populated coastal towns of the Kerala state in southern India.Groundwater is the main source of drinking water for the 240,991 people living in this region.The groundwater is being extracted from a multi-layer aquifer system of unconsolidated to semi-consolidated sedimentary formations,which range in age from Recent to Tertiary.The public water distribution system uses dug and tube wells.Though there were reports on fluoride contamination,this study reports for the first time excess fluoride and excess salinity in the drinking water of the region.The quality parameters,like Electrical Conductivity(EC) ranges from 266 to 3900 μs/cm,the fluoride content ranges from 0.68 to2.88 mg/L,and the chloride ranges between the 5.7 to 1253 mg/L.The main water types are Na-HC03,NaCO_3 and Na-Cl.The aqueous concentrations of F~- and CO_3~(2-) show positive correlation whereas F~- and Ca~(2+) show negative correlation.The source of fluoride in the groundwater could be from dissolution of fluorapatite,which is a common mineral in the Tertiary sediments of the area.Long residence time,sediment-groundwater interaction and facies changes(Ca-HCO_3 to Na-HCO_3) during groundwater flow regime are the major factors responsible for the high fluoride content in the groundwater of the area.High strontium content and high EC in some of the wells indicate saline water intrusion that could be due to the excess pumping from the deeper aquifers of the area.The water quality index computation has revealed that 62%of groundwater belongs to poor quality and is not suitable for domestic purposes as per BIS and WHO standards.Since the groundwater is the only source of drinking water in the area,proper treatment strategies and regulating the groundwater extraction are required as the quality deterioration poses serious threat to human health.  相似文献   
6.
A high-resolution mesoscale numerical model (MM5) has been used to study the coastal atmospheric circulation of the central west coast of India, and Goa in particular. The model is employed with three nested domains. The innermost domain of 3 km mesh covers Goa and the surrounding region. Simulations have been carried out for three different seasons—northeast (NE) monsoon, transition period and southwest (SW) monsoon with appropriate physics options to understand the coastal wind system. The simulated wind speed and direction match well with the observations. The model winds show the presence of a sea breeze during the NE monsoon season and transition period, and its absence during the SW monsoon season. In the winter period, the synoptic flow is northeasterly (offshore) and it weakens the sea breeze (onshore flow) resulting in less diurnal variation, while during the transition period, the synoptic flow is onshore and it intensifies the sea breeze. During the northeast monsoon at an altitude of above 750 m, the wind direction reverses, and this is the upper return current, indicating the vertical extent of the sea breeze. A well-developed land sea breeze circulation occurs during the transition period, with vertical extension of 300 and 1,100 m, respectively.  相似文献   
7.
This article presents some advantages using a shape-preserving total variation diminishing (TVD) advection scheme in an ecosystem model. The superbee flux-limiter has been used to the second-order Lax–Wendroff advection scheme to make it TVD. We performed simulations for three shelf sea regions with different characteristic time scales, namely, the North Sea, the Barents Sea, and the Baltic Sea. To explore the advantages, we also performed reference runs with the much simpler and computationally cheaper upwind advection scheme. Frontal structures are much better resolved with the TVD scheme. The bottom salinity in the Baltic Sea stays at realistic values throughout the 10-year simulation with the TVD scheme, while with the upwind scheme, it drifts towards lower values and the permanent haline stratification in the Baltic is almost completely eroded within one seasonal cycle. Only when applying TVD for both the vertical and horizontal advections the model succeeded to preserve haline stratification in the decadal simulation. Lower trophic level patterns are far better reproduced with the TVD scheme, and for the estimated cod larval survival, the advantages seem to be even stronger. Simulations using the TVD-derived prey fields identified distinct regions such as Dogger Bank to favor potential larvae survival (PLS), which did not appear as particularly favorable in the upstream simulations. The TVD scheme needs about 25?% more time on the central processing unit (CPU) in case of a pure hydrodynamic setup with only two scalar state variables (Barents Sea application). The additional CPU time cost increases for a coupled physical–biological model application with a large number of state variables. However, this is more than compensated by all the advantages found, and, hence, we conclude that it is worthwhile to use the TVD scheme in our ecosystem model.  相似文献   
8.
Nonlinear ensemble prediction of chaotic daily rainfall   总被引:3,自引:0,他引:3  
The significance of treating rainfall as a chaotic system instead of a stochastic system for a better understanding of the underlying dynamics has been taken up by various studies recently. However, an important limitation of all these approaches is the dependence on a single method for identifying the chaotic nature and the parameters involved. Many of these approaches aim at only analyzing the chaotic nature and not its prediction. In the present study, an attempt is made to identify chaos using various techniques and prediction is also done by generating ensembles in order to quantify the uncertainty involved. Daily rainfall data of three regions with contrasting characteristics (mainly in the spatial area covered), Malaprabha, Mahanadi and All-India for the period 1955–2000 are used for the study. Auto-correlation and mutual information methods are used to determine the delay time for the phase space reconstruction. Optimum embedding dimension is determined using correlation dimension, false nearest neighbour algorithm and also nonlinear prediction methods. The low embedding dimensions obtained from these methods indicate the existence of low dimensional chaos in the three rainfall series. Correlation dimension method is done on the phase randomized and first derivative of the data series to check whether the saturation of the dimension is due to the inherent linear correlation structure or due to low dimensional dynamics. Positive Lyapunov exponents obtained prove the exponential divergence of the trajectories and hence the unpredictability. Surrogate data test is also done to further confirm the nonlinear structure of the rainfall series. A range of plausible parameters is used for generating an ensemble of predictions of rainfall for each year separately for the period 1996–2000 using the data till the preceding year. For analyzing the sensitiveness to initial conditions, predictions are done from two different months in a year viz., from the beginning of January and June. The reasonably good predictions obtained indicate the efficiency of the nonlinear prediction method for predicting the rainfall series. Also, the rank probability skill score and the rank histograms show that the ensembles generated are reliable with a good spread and skill. A comparison of results of the three regions indicates that although they are chaotic in nature, the spatial averaging over a large area can increase the dimension and improve the predictability, thus destroying the chaotic nature.  相似文献   
9.
Dhanya  J.  Raghukanth  S. T. G. 《Natural Hazards》2020,100(1):279-311
Natural Hazards - Flash flood is disastrous; it losses property and life. Its effect is intensified while it occurs in semiarid region because of less preparedness. The present case conferred about...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号