首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地球物理   1篇
地质学   2篇
海洋学   1篇
自然地理   1篇
  2013年   1篇
  2011年   1篇
  2007年   1篇
  2003年   1篇
  1988年   1篇
排序方式: 共有5条查询结果,搜索用时 343 毫秒
1
1.
Beryllium isotope concentrations were determined in monthly rainfall collections at three sites across New Zealand (36 to 45° S), from October 1996 to November 1998. At the northern sites of Leigh (near Auckland) and Gracefield (near Wellington), 7Be and 10Be concentrations are relatively constant at 1.2 to 1.4 × 107 atoms kg−1 rain and 2.1 to 2.6 × 107 atoms kg−1 rain, respectively. These concentrations correspond to annual flux rates of ∼15 and ∼27 × 109 atoms m−2 y−1, respectively. At the southern site of Dunedin, concentrations are similar to those at the northern sites, but flux rates are significantly lower at ∼ 9 and ∼19 × 109 atoms m−2 y−1, respectively, because of lower average rainfall east of the Southern Alps mountain range. These results are broadly similar to those reported by Brown et al. (1989) and Knies et al. (1994) for rain from midlatitude sites in the USA sampled from 1986 to 1994. Mean 7Be/10Be ratios for New Zealand (0.47 to 0.61) are, however, significantly lower than for the USA (0.69 to 0.78), due in part to the addition of 10Be from re-suspended dust. Subtraction of the dust component increases the New Zealand 7Be/10Be ratios to 0.70 (Leigh), 0.65 (Gracefield) and 0.50 (Dunedin). The adjusted results provide evidence for transfer of older stratospheric air to the troposphere in late-spring-summer, an effect which is strongest in the north. The overall reduction of 7Be/10Be from north to south implies an increase in residence time from ∼ 80 to ∼100 d for Be isotopes in the atmosphere above New Zealand.  相似文献   
2.
We applied the 32Si dating technique to a sediment core from Lake Baikal to obtain the sediment chronology for the last millennium. The core was recovered about 4 km offshore from the north slope of the South Basin in 1,366 m water depth. The sediment material consisted of continuously accumulated diatom-rich geogenic-terrigenous mud, intercalated with a number of dark olive-grey turbidite layers. The sediment layers containing the turbidites were excluded from 32Si sampling to obtain the chronology that is representative of the continuous sedimentation. The initial 32Si activity of 31.3 dpm kg?1 SiO2, measured in sediment trap samples, confirms the trend of 32Si specific activities of biogenic silica found in other Northern Hemisphere lakes. The four sediment core samples from depth 0–48 cm have 32Si specific activities between 23.5 and 0.5 dpm kg?1 SiO2, with corresponding ages between 60 and 860 years and constant sedimentation rate of 0.036 ± 0.004 cm year?1 over the most recent 800 years. 32Si allowed us for the first time to date the uppermost turbidites in the South Basin of Lake Baikal, to 1030, 1310 and 1670 ad. Given these dates, the last long-distance turbidity current triggered by slope instabilities had occurred 330 years before 2000 ad, and the intervals between the 1310 and 1670 ad event and between the 1030 and 1310 ad event were 360 and 280 years, respectively. The 32Si ages allow unprecedented time resolution for reconstruction of the former environmental and climatic conditions during the past millennium.  相似文献   
3.
Brothers volcano, of the Kermadec intraoceanic arc, is host to a hydrothermal system unique among seafloor hydrothermal systems known anywhere in the world. It has two distinct vent fields, known as the NW Caldera and Cone sites, whose geology, permeability, vent fluid compositions, mineralogy, and ore-forming conditions are in stark contrast to each other. The NW Caldera site strikes for ??600?m in a SW?CNE direction with chimneys occurring over a ??145-m depth interval, between ??1,690 and 1,545?m. At least 100 dead and active sulfide chimney spires occur in this field and are typically 2?C3?m in height, with some reaching 6?C7?m. Their ages (at time of sampling) fall broadly into three groups: <4, 23, and 35?years old. The chimneys typically occur near the base of individual fault-controlled benches on the caldera wall, striking in lines orthogonal to the slopes. Rarer are massive sulfide crusts 2?C3?m thick. Two main types of chimney predominate: Cu-rich (up to 28.5?wt.% Cu) and, more commonly, Zn-rich (up to 43.8?wt.% Zn). Geochemical results show that Mo, Bi, Co, Se, Sn, and Au (up to 91?ppm) are correlated with the Cu mineralization, whereas Cd, Hg, Sb, Ag, and As are associated with the dominant Zn-rich mineralization. The Cone site comprises the Upper Cone site atop the summit of the recent (main) dacite cone and the Lower Cone site that straddles the summit of an older, smaller, more degraded dacite cone on the NE flank of the main cone. Huge volumes of diffuse venting are seen at the Lower Cone site, in contrast to venting at both the Upper Cone and NW Caldera sites. Individual vents are marked by low-relief (??0.5?m) mounds comprising predominately native sulfur with bacterial mats. Vent fluids of the NW Caldera field are focused, hot (??300°C), acidic (pH????2.8), metal-rich, and gas-poor. Calculated end-member fluids from NW Caldera vents indicate that phase separation has occurred, with Cl values ranging from 93% to 137% of seawater values. By contrast, vent fluids at the Cone site are diffuse, noticeably cooler (??122°C), more acidic (pH?1.9), metal-poor, and gas-rich. Higher-than-seawater values of SO4 and Mg in the Cone vent fluids show that these ions are being added to the hydrothermal fluid and are not being depleted via normal water/rock interactions. Iron oxide crusts 3?years in age cover the main cone summit and appear to have formed from Fe-rich brines. Evidence for magmatic contributions to the hydrothermal system at Brothers includes: high concentrations of dissolved CO2 (e.g., 206?mM/kg at the Cone site); high CO2/3He; negative ??D and ??18OH2O for vent fluids; negative ??34S for sulfides (to ?4.6??), sulfur (to ?10.2??), and ??15N2 (to ?3.5??); vent fluid pH values to 1.9; and mineral assemblages common to high-sulfidation systems. Changing physicochemical conditions at the Brothers hydrothermal system, and especially the Cone site, occur over periods of months to hundreds of years, as shown by interlayered Cu?+?Au- and Zn-rich zones in chimneys, variable fluid and isotopic compositions, similar shifts in 3He/4He values for both Cone and NW Caldera sites, and overprinting of ??magmatic?? mineral assemblages by water/rock-dominated assemblages. Metals, especially Cu and possibly Au, may be entering the hydrothermal system via the dissolution of metal-rich glasses. They are then transported rapidly up into the system via magmatic volatiles utilizing vertical (??2.5?km long), narrow (??300-m diameter) ??pipes,?? consistent with evidence of vent fluids forming at relatively shallow depths. The NW Caldera and Cone sites are considered to represent stages along a continuum between water/rock- and magmatic/hydrothermal-dominated end-members.  相似文献   
4.
Abstract   Hydrogenetic ferromanganese crusts are widespread on the floor of the northwestern Pacific Ocean, south and east of the Japanese Islands, despite vigorous tectonic activity, such as subduction and back-arc spreading, since at least the Mid-Paleogene over the Philippine Sea Plate region and nearby. The crusts occur mainly at water depths shallower than 3000 m, but also at greater depths of up to 6000 m. Fine-scale 10Be/9Be dating was undertaken on several 5–10 cm thick hydrogenetic ferromanganese crusts sampled from different geological environments, including inactive submarine volcanoes, tectonic escarpments and abandoned rifts. The results indicate that the crusts have grown at relatively constant rates of 4–7 mm/my without any significant time breaks. These uniform and constant growth rates suggest that the basins have been exposed constantly to oxygenated bottom waters since their formation in the Middle Miocene ( ca 15 Ma) or earlier. Local geological or oceanographic environmental changes might have slowed or increased some of the growth rates resulting in correlation of some internal structures. The Philippine Sea Plate region could have economic potential in areas of thick hydrogenetic ferromanganese crusts over a wide range of water depths.  相似文献   
5.
Recent sediments and separated phosphate pellets ( 125–500 μm in diameter) from the Peru shelf have been analyzed for uranium decay-series isotopes and 14C in order to determine age relationships and mineralization rates. Uranium-series ages of pellets separated from one box core are significantly higher than AMS radiocarbon ages determined for the same pellets. These differences appear to be a consequence of mixing of an older generation of pellets with ones which are more recently formed. Postdepositional adsorption of reactive elements such as thorium and protactinium onto pellet surfaces may also contribute to the observed discordancy with radiocarbon ages.

Sediment radiocarbon and 210Pb sediment results, as well as some trends in the uranium-series data, suggest that high concentrations of phosphate pellets have accumulated in some Peru shelf sediments without extensive reworking. Individual pellets apparently form very quickly, on time scales of a few years. Estimated authigenic uptake rates of phosphorus into pellets ranges from 0.5 to 9.40 μmol-P cm− 2 yr− 1, somewhat higher than rates measured for nodules from the same area. This is consistent with observations that pelletal morphologies predominate over nodular forms within ancient phosphorite deposits.  相似文献   

1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号