首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1983篇
  免费   73篇
  国内免费   5篇
测绘学   42篇
大气科学   126篇
地球物理   469篇
地质学   669篇
海洋学   170篇
天文学   394篇
综合类   14篇
自然地理   177篇
  2021年   18篇
  2020年   21篇
  2019年   23篇
  2018年   38篇
  2017年   27篇
  2016年   52篇
  2015年   21篇
  2014年   61篇
  2013年   66篇
  2012年   56篇
  2011年   63篇
  2010年   83篇
  2009年   90篇
  2008年   88篇
  2007年   88篇
  2006年   89篇
  2005年   61篇
  2004年   71篇
  2003年   66篇
  2002年   50篇
  2001年   38篇
  2000年   34篇
  1999年   33篇
  1998年   38篇
  1997年   20篇
  1996年   43篇
  1995年   23篇
  1994年   23篇
  1993年   19篇
  1992年   22篇
  1991年   15篇
  1990年   19篇
  1989年   19篇
  1988年   22篇
  1987年   21篇
  1986年   18篇
  1985年   39篇
  1984年   35篇
  1983年   43篇
  1982年   44篇
  1981年   32篇
  1980年   24篇
  1979年   46篇
  1978年   34篇
  1977年   29篇
  1976年   26篇
  1975年   28篇
  1974年   31篇
  1973年   32篇
  1972年   11篇
排序方式: 共有2061条查询结果,搜索用时 15 毫秒
1.
During the Second World War, the Allied invasion of the French coast of Normandy on D‐Day, 6 June 1944, was the greatest amphibious assault in world history. An article in Geology Today (v.11, for 1995, pp.58–63) marked the 50th anniversary of the end of the war in Europe, on 8 May 1945, by describing how British military geologists had participated in planning for D‐Day and in the NW Europe campaign that followed it. The work of these geologists provides a classic case history, revealing that ‘military geology’ has many potential applications. Geological factors influenced site selection for temporary airfields, predictions of trafficability for the Normandy beaches, the development of potable water supplies, and quarrying for road metal—and more besides. This new article helps to mark the 75th anniversary of D‐Day by further details of how geologists and geology contributed to Allied victory.  相似文献   
2.
The discovery of X-ray binary systems in the 1960's opened up stellar evolution theory by revealing further endpoints in addition to white dwarfs. This review summarises recent progress in studies of stellar-evolutionary processes that lead to X-ray binaries themselves, the mass transfer rates that power them, and the accretion processes which convert this into electromagnetic radiation. Particular attention is paid to the topics of mass transfer fluctuations and of the accretion by magnetic compact stars.  相似文献   
3.
4.
The Bloomington meteorite, a 67.8 gram veined, brecciated chondrite, fell during the summer of 1938 in Bloomington, Illinois. Its olivine, orthopyroxene and metal compositions (fo69, en74 and Fe52 Ni48 respectively) and its texture identify it as a brecciated LL6 chondrite of shock facies d. Shock melt glasses occur in Bloomington as sparse melt pockets and veins in clasts and as isolated masses in the black, clast-rich matrix. The vein glasses chemically resemble bulk LL-group chondrites and thus appear to reflect total melting of the host meteorite. The melt pocket and matrix glasses, like those described previously in L-group chondrites, have more varied compositions and are typically enriched in normative plagioclase. All glasses that we analyzed in Bloomington have FeO/MgO and Na/Al ratios similar to those of LL-group chondrites, indicating that melting of this meteorite involved neither a significant change in the oxidation state of iron nor loss of sodium to a vapor phase. Bloomington is a monomict breccia whose components formed in place as a result of a single episode of shock and attendant melting.  相似文献   
5.
Using statistical orbital ranging, we systematically study the orbit computation problem for transneptunian objects (TNOs). We have automated orbit computation for large numbers of objects, and, more importantly, we are able to obtain orbits even for the most sparsely observed objects (observational arcs of a few days). For such objects, the resulting orbit distributions include a large number of high-eccentricity orbits, in which TNOs can be perturbed by close encounters with Neptune. The stability of bodies on the computed orbits has therefore been ascertained by performing a study of close encounters with the major planets. We classify TNO orbit distributions statistically, and we study the evolution of their ephemeris uncertainties. We find that the orbital element distributions for the most numerous single-apparition TNOs do not support the existence of a postulated sharp edge to the belt beyond 50 AU. The technique of statistical ranging provides ephemeris predictions more generally than previously possible also for poorly observed TNOs.  相似文献   
6.
We show that the usual picture of supersoft X-ray binary evolution as driven by conservative thermal time-scale mass transfer cannot explain the short orbital periods of RX J0537.7–7034 (3.5 h) and 1E 0035.4–7230 (4.1 h). Non-conservative evolution may produce such periods, but requires very significant mass loss, and is highly constrained.  相似文献   
7.
Progress in the introduction of coulometry for the analysis of total carbon dioxide (TCO2) in marine waters is described. An extractor—stripper removes CO2 that is measured coulometrically by the quantity of electricity (coulombs) used to electrogenerate OH? ions for the titration of the acid formed by the reaction of CO2 and ethanolamine. The equivalence point is detected photometrically with thymolphthalein as the indicator, and Faraday's Law relates coulombs to equivalents of titrant generated and CO2 determined so that there are no standard curves needed or titrants to standardize or store. Accuracy was determined by adding gelatin capsules containing 100–1500 μg C of pure CaCO3 into the stripper, and accuracies of better than ± 1 μg C were achieved. The best precision for natural seawater (± 1 standard error) of ± 0.5 μmol l?1 was found for 17 samples of Bermuda coastal waters having a mean TCO2 of 2007.2 μmol l?1 (0.05% CV). Sources of error and precautions are discussed. This method, which has been used successfully at sea, can be used to study a variety of marine phenomena involving TCO2.  相似文献   
8.
9.
10.
Abstract— Primary minerals in calcium‐aluminum‐rich inclusions (CAIs), Al‐rich and ferromagnesian chondrules in each chondrite group have δ18O values that typically range from ?50 to +5%0. Neglecting effects due to minor mass fractionations, the oxygen isotopic data for each chondrite group and for micrometeorites define lines on the three‐isotope plot with slopes of 1.01 ± 0.06 and intercepts of ?2 ± 1. This suggests that the same kind of nebular process produced the 16O variations among chondrules and CAIs in all groups. Chemical and isotopic properties of some CAIs and chondrules strongly suggest that they formed from solar nebula condensates. This is incompatible with the existing two‐component model for oxygen isotopes in which chondrules and CAIs were derived from heated and melted 16O‐rich presolar dust that exchanged oxygen with 16O‐poor nebular gas. Some FUN CAIs (inclusions with isotope anomalies due to fractionation and unknown nuclear effects) have chemical and isotopic compositions indicating they are evaporative residues of presolar material, which is incompatible with 16O fractionation during mass‐independent gas phase reactions in the solar nebula. There is only one plausible reason why solar nebula condensates and evaporative residues of presolar materials are both enriched in 16O. Condensation must have occurred in a nebular region where the oxygen was largely derived from evaporated 16O‐rich dust. A simple model suggests that dust was enriched (or gas was depleted) relative to cosmic proportions by factors of ~10 to >50 prior to condensation for most CAIs and factors of 1–5 for chondrule precursor material. We infer that dust‐gas fractionation prior to evaporation and condensation was more important in establishing the oxygen isotopic composition of CAIs and chondrules than any subsequent exchange with nebular gases. Dust‐gas fractionation may have occurred near the inner edge of the disk where nebular gases accreted into the protosun and Shu and colleagues suggest that CAIs formed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号