首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   3篇
地球物理   12篇
地质学   8篇
海洋学   2篇
天文学   4篇
自然地理   1篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2016年   4篇
  2015年   1篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   3篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1995年   1篇
  1990年   1篇
  1988年   1篇
  1983年   1篇
排序方式: 共有27条查询结果,搜索用时 390 毫秒
1.
Regional finite-difference models tend to have large cell sizes, often on the order of 1–2 km on a side. Although the regional flow patterns in deeper formations may be adequately represented by such a model, the intricate surface water and groundwater interactions in the shallower layers are not. Several stream reaches and nearby wells may occur in a single cell, precluding any meaningful modeling of the surface water and groundwater interactions between the individual features. We propose to replace the upper MODFLOW layer or layers, in which the surface water and groundwater interactions occur, by an analytic element model (GFLOW) that does not employ a model grid; instead, it represents wells and surface waters directly by the use of point-sinks and line-sinks. For many practical cases it suffices to provide GFLOW with the vertical leakage rates calculated in the original coarse MODFLOW model in order to obtain a good representation of surface water and groundwater interactions. However, when the combined transmissivities in the deeper (MODFLOW) layers dominate, the accuracy of the GFLOW solution diminishes. For those cases, an iterative coupling procedure, whereby the leakages between the GFLOW and MODFLOW model are updated, appreciably improves the overall solution, albeit at considerable computational cost. The coupled GFLOW–MODFLOW model is applicable to relatively large areas, in many cases to the entire model domain, thus forming an attractive alternative to local grid refinement or inset models.  相似文献   
2.
A stepwise modeling approach is implemented in which a regional one-layer analytic element model is used to simulate the flow system and to furnish boundary conditions for an extracted local three-dimensional model. In this case study the stepwise approach is used to evaluate the fate of recharge in the Menomonee Valley adjacent to Lake Michigan. Two major receptors exist for recharge that flows through contaminated valley fill: the surface water estuary and a tunnel system constructed approximately 75 to 110 m below land surface to store storm runoff. The primary objective of the modeling is to delineate the contributing areas of recharge to each receptor. Of interest is the ability of the one-layer regional model to furnish flux boundary conditions to the local three-dimensional model despite the presence of vertical flow conditions at the boundaries of the local model. Sensitivity analysis suggests that the local model was insensitive to the vertical distribution of the flux. Each step of the modeling approach demonstrates that both receptors play an important role in capturing valley recharge. The pattern of capture of the one-layer model differed in shape from that delineated by the multi-layer local model in the presence of a flow system with pronounced vertical anisotropy and with sinks drawing water from different elevations.  相似文献   
3.
Simulating ground water-lake interactions: approaches and insights   总被引:4,自引:0,他引:4  
Approaches for modeling lake-ground water interactions have evolved significantly from early simulations that used fixed lake stages specified as constant head to sophisticated LAK packages for MODFLOW. Although model input can be complex, the LAK package capabilities and output are superior to methods that rely on a fixed lake stage and compare well to other simple methods where lake stage can be calculated. Regardless of the approach, guidelines presented here for model grid size, location of three-dimensional flow, and extent of vertical capture can facilitate the construction of appropriately detailed models that simulate important lake-ground water interactions without adding unnecessary complexity. In addition to MODFLOW approaches, lake simulation has been formulated in terms of analytic elements. The analytic element lake package had acceptable agreement with a published LAKI problem, even though there were differences in the total lake conductance and number of layers used in the two models. The grid size used in the original LAKI problem, however, violated a grid size guideline presented in this paper. Grid sensitivity analyses demonstrated that an appreciable discrepancy in the distribution of stream and lake flux was related to the large grid size used in the original LAKI problem. This artifact is expected regardless of MODFLOW LAK package used. When the grid size was reduced, a finite-difference formulation approached the analytic element results. These insights and guidelines can help ensure that the proper lake simulation tool is being selected and applied.  相似文献   
4.
Apatite fission track (AFT) thermochronology has been applied to a composite depth profile of Precambrian basement rocks underlying the Phanerozoic Canadian Williston Basin. Thermal histories derived from the AFT data record cycles of heating and cooling which follow the pattern of regional burial history, but which also indicate major temporal and geographic variations in the timing and degree of maximum Phanerozoic temperatures. These variations in the thermal history were not previously recognised from organic maturity indicators and subsidence models. Specifically, our study suggests a late Paleozoic heat flow anomaly with a geographic extent closer to that of Middle Devonian–Carboniferous Kaskaskia subsidence patterns than to that of the Williston Basin proper. This thermal anomaly has both economic and geodynamic significance. The recognition that potential Upper Cambrian–Lower Ordovician petroleum source rocks became fully mature during the late Paleozoic distinguishes that petroleum system from others that entered the main hydrocarbon generation stage in latest Cretaceous and Paleogene time. The late Paleozoic heat flow anomaly suggested from the AFT data implies a geodynamic coupling between inelastic Kaskaskia subsidence and previously inferred late Paleozoic lithospheric weakening. While the temporally varying heat flow model is preferred, the lack of independent constraints on the maximum thickness of upper Paleozoic strata precludes the outright rejection of the previous constant heat flow model. The AFT data provide important new constraints on the evolution of the epicratonic Williston Basin and its geodynamic models.  相似文献   
5.
The evaporitic Hessian Zechstein Basin is a sub‐basin of the Southern Zechstein Basin, situated at its southern margin. Twelve facies groups were identified in the Zechstein Limestone and Lower Werra Anhydrite in order to better understand the sequence‐stratigraphic evolution of this sub‐basin, which contains economically important potassium salts. Four different paleogeographic depositional areas were recognized based on the regional distribution of facies. Siliciclastic‐carbonate, carbonate, carbonate‐evaporite and evaporite shallowing‐upward successions are developed. These allow the establishment of parasequences and sequences, as well as correlation throughout the Hessian Basin and into the Southern Zechstein Basin. Two depositional sequences are distinguished, Zechstein sequence 1 and Zechstein sequence 2. The former comprises the succession from the Variscan basement up to the lowermost part of the Werra Anhydrite, including the Kupferschiefer as part of the transgressive systems tract. The highstand systems tract is defined by the Zechstein Limestone, in which two parasequences are developed. In large parts of the Hessian Basin, Zechstein sequence 1 is capped by a karstic, subaerial exposure surface, interpreted as recording a type‐1 sequence boundary that formed during a distinct brine level fall. Low‐lying central areas (Central Hessian Sub‐basin, Werra Sub‐basin), however, were not exposed and show a correlative conformity. Topography was minimal at the end of sequence 1. Widely developed perilittoral, sabkha and salina shallowing‐upward successions indicate a renewed rise of brine level (interpreted as a transgressive systems tract), because of inflow of preconcentrated brines from the Southern Zechstein Basin to the north. This marks the initiation of Zechstein sequence 2, which comprises most of the Lower Werra Anhydrite. In the Central Hessian Sub‐basin, situated proximal to the brine inflow and on the ridges within the Hessian Basin, physico‐chemical conditions were well suited for sulphate precipitation to form a thick cyclic succession. It consists of four parasequences that completely filled the increased accommodation space. In contrast, only minor sulphate accumulation occurred in the Werra Sub‐basin, situated further southwards and distal to the inflow. As a result of substantially different sulphate precipitation rates during increased accommodation, water depth in the region became more variable. The Werra Sub‐basin, characterized by very low sedimentation rates, became increasingly deeper through time, trapping dense halite brines and precipitating rock salt deposits (Werra Halite). This ‘self‐organization’ model for an evaporitic basin, in which depositional relief evolves with sedimentation and relief is filled by evaporite thereafter, contradicts earlier interpretations, that call upon the existence of a tectonic depression in the Werra area, which controlled sedimentation from the beginning of the Zechstein.  相似文献   
6.
7.
New photoelectric UBVRI data for stars in the young open cluster Tr 14 in the Great Carina Nebula (NGC 3372) are presented. The two-color diagram separates clearly the member from the nonmember stars. Thus, the membership of about 39 stars is suggested. Those located in the compact core of the cluster, have smaller reddening dispersion than those around it. No star appears above the Main Sequence at the faint end of the color-magnitude diagram. A distance modulus ofV 0?Mv=12.20±0.2 is obtained, which gives an age of about 5×106 yr. From only the photometry it is concluded to be slightly older than the nearby cluster Tr16.  相似文献   
8.
Analysis of a 1.15 km deep apatite fission track (AFT) thermochronology profile at the Underground Research Laboratory (URL), in the southwestern Canadian Shield suggests two Phanerozoic heating and cooling episodes indicating significant, previously unsuspected, Phanerozoic heat flow variations. Phanerozoic temperature and heat flow variations are temporally associated with burial and erosion of the Precambrian crystalline shield and its overlying Phanerozoic successions, which are now eroded completely. Maximum Phanerozoic temperatures occurred in the late Paleozoic when the geothermal gradient is estimated to have been ~ 40-50 °C/km (compared to a present day gradient of ~ 14 ± 2 °C/km) and the sedimentary cover was ~ 800-1100 m thick. Our thermal history models, confirm regional stratigraphic relationships that suggest that the Paleozoic succession was completely eroded prior to beginning of Mesozoic sedimentation. A second heating phase occurred during Late Cretaceous-Paleogene burial when the geothermal gradient is estimated to have been ~ 20-25 °C/km and the Mesozoic and Cenozoic succession was ~ 1200 to 1400 m thick. The Phanerozoic thermal history at the URL site shows a pattern similar to that inferred previously for the epicratonic Williston Basin, the centre of which lies several 100 km to the west. This implies a common regional thermal history for cratonic rocks underlying both the basin and the currently exposed shield. It is suggested that the morphotectonic differences between the Williston Basin and the exposed shield at the URL are due to a dissimilar thermomechanical response to a common, but more complicated than previously inferred, Phanerozoic geodynamic history. The two Phanerozoic periods of variations in geothermal gradient (heat flow) were coeval with epeirogenic movements related to the deposition and erosion of sediments. These paleogeodynamic variations are tentatively attributed to far-field effects of orogenic processes occurring at the plate margin (i.e. the Antler and the Cordilleran orogenies) and the associated accumulation of cratonic seaway sedimentary sequences (Kaskaskia and Zuni sequences).  相似文献   
9.
Residual fuel oil spilled into the sea from the Eshkol power station on 8 February, 1998 contaminated about 9 km of the foreshore north of the Ashdod harbour. A study of the aliphatic, polycyclic alkane and polyaromatic hydrocarbon (PAH) composition of the spilled oil shows rapid weathering in the early stages followed by gradual slowdown after about three months. Weathering of isoprenoids and PAH compounds and variation in Pr/Ph ratio appear to occur almost contemporaneously with that of n-alkanes, at a relatively moderate level of degradation, when much of the >C20 n-alkane envelope is still well preserved. Depletion of various compounds in accordance with molecular size rather than molecular structure appears to imply that physical weathering processes, i.e. evaporation and perhaps flushing due to wave energy, might have played an important role in the degradation of the spilled residual fuel oil in this study case.  相似文献   
10.
Failure of nonstructural components during an earthquake can lead to structure functionality loss, cause widespread property damage, and pose a life-safety threat to the occupants. Current code provisions for floor-anchored components aim to minimize the life safety threat by specifying lateral force demands and anchoring requirements. These code requirements are based on a simplified equation that does not fully consider the contribution of the attachment to the overall component dynamic response. Previous results from shaking-table tests of anchored components suggest that the component attachment is an important parameter that determines its dynamic properties. For this study, a nonstructural experimental model was attached via several attachment designs to a concrete slab and tested on a shaking table to evaluate this contribution. The attachments were dimensioned based on a capacity design approach, such that they would be the weakest element in the force path while providing a yielding mechanism. The attachment designs provide different plastic mechanisms that control the displacement ductility in the response of the component. This paper focuses on the contribution of the attachment to the dynamic response and seismic force demand on the component. The experimental results demonstrate that the selected attachment properties govern the boundary conditions of the nonstructural component and strongly influence its dynamic response. The more flexible attachments sustained large deformations, leading to tensile membrane action and enhanced tensile strength in the attachments. Consequently, the ductile attachments did not result in reduced seismic loads in the nonstructural components.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号