首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   1篇
地球物理   1篇
地质学   1篇
  2009年   1篇
  2001年   1篇
排序方式: 共有2条查询结果,搜索用时 171 毫秒
1
1.
Abstract: Landslide research at the British Geological Survey (BGS) is carried out through a number of activities, including surveying, database development and real-time monitoring of landslides. Landslide mapping across the UK has been carried out since BGS started geological mapping in 1835. Today, BGS geologists use a combination of remote sensing and ground-based investigations to survey landslides. The development of waterproof tablet computers (BGS·SIGMAmobile), with inbuilt GPS and GIS for field data capture provides an accurate and rapid mapping methodology for field surveys. Regional and national mapping of landslides is carried out in conjunction with site-specific monitoring, using terrestrial LiDAR and differential GPS technologies, which BGS has successfully developed for this application. In addition to surface monitoring, BGS is currently developing geophysical ground-imaging systems for landslide monitoring, which provide real-time information on subsurface changes prior to failure events. BGS’s mapping and monitoring activities directly feed into the BGS National Landslide Database, the most extensive source of information on landslides in Great Britain. It currently holds over 14?000 records of landslide events. By combining BGS’s corporate datasets with expert knowledge, BGS has developed a landslide hazard assessment tool, GeoSure, which provides information on the relative landslide hazard susceptibility at national scale.  相似文献   
2.
A rapid-screening technique was developed to identify lithologies that best disperse artificial recharge via surface infiltration and minimize effects on ground water chemistry. The technique prospectively evaluates basin infiltration rates and water chemistry influences by integrating geotechnical, hydraulic, and water quality data with column test data and numerical modeling. The technique was validated using field data collected from surface infiltration basins designed to recharge ground water pumped from the Pipeline pit gold mine in Nevada. Observed recharge rates at these infiltration sites correlated most significantly with depth to groundwater, with basins in coarse-grained lithologies performing better (0.45 to 0.85 m/day) than those with fine-grained layers (< 0.30 m/day). Observed water quality resulting from leaching of the previously unsaturated vadose zone showed a transitory (< six months) increase in solute concentrations followed by a decrease to baseline conditions, a phenomenon also observed in column tests that leached native soils with local ground water. Leaching of fine-grained soils with evaporites resulted in greater solute concentrations (TDS > 2000 mg/L) than coarse-grained soils (< 1200 mg/L). The results of HYDRUS_2D simulations using the accumulated data as input were in agreement with observed ground water chemistry downgradient of the infiltration basins for a variety of lithologies. Sites for infiltration basins can be rapidly screened to include areas with greatest depth to groundwater and in coarsest alluvial sediments, and impact to ground water chemistry can be reliably predicted using computer modeling and column test results.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号