首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   0篇
大气科学   1篇
地球物理   28篇
地质学   15篇
海洋学   3篇
  2021年   2篇
  2020年   5篇
  2018年   1篇
  2017年   4篇
  2016年   5篇
  2014年   3篇
  2013年   4篇
  2012年   5篇
  2011年   2篇
  2009年   5篇
  2008年   1篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2000年   1篇
排序方式: 共有47条查询结果,搜索用时 31 毫秒
1.
Long-term observational data on hydrology, hydrochemistry, and hydrobiology are generalized and used for systems analysis of the biohydrochemical transformation processes of organic and biogenic substances in a marine environment. An ecological model with the systematized data is used to assess the annual dynamics of concentrations of organic and mineral N, P, and Si compounds and dissolved organic C and O2 in eight water areas within the White Sea at specified conditions of water mass transport, river runoff, and water exchange with the Barents Sea. Variations in the biomasses of the major transformers of organic and biogenic substances (heterotrophic bacteria, phyto- and zooplankton, and microphytes) and their biological production were also evaluated. These characteristics serve as indicators of the state of the water environment, the presence of nutrients in it, and their import from outside.  相似文献   
2.
The use of a mathematical model, describing the transformations of organic and mineral compounds of C, Si, N, and P for the generalization of hydrological, hydrochemical, and hydrobiological data on nine regions in the White Sea is demonstrated. The regions examined include the head of Kandalaksha Gulf, Dvina Gulf, Mezen Gulf, Onega Bay, the Solovetskie Islands’ area, the central, deep-water part (or Basin), Gorlo, Voronka, and the Chupa Estuary. The results of modeling the transformations of biogenic substances in the water areas of the Chupa Estuary, and other gulfs and bays in the White Sea are compared and analyzed. Calculated variations in the concentrations of biogenic substances and detritus, microorganism biomasses, characteristics of their activity (specific growth rates and biomass turnover times) within a year are presented and discussed. The estimated characteristics are shown to agree with observational data. Particular attention is paid to estimating the organic matter production rates by phytoplankton and calculating balances of biogenic compounds in the Chupa Estuary.  相似文献   
3.
4.
The final work on the development of an expert system for the assessment of the state and the rational use of lake??s resources is presented. A block of expert system for the assessment of ichthyocenoses is described. For this purpose, databases and knowledge bases on 12 species of most abundant Karelian fishes were used and a model of community, based on the principle of trophic chain, was proposed. The system was developed for water bodies with different compositions of ichthyocenoses and different food and abiotic conditions. The model makes it possible to assess the ichthyomasses and age structure of populations and to determine the rational ways to commercial use of the community for maximizing the catches with the preservation of biodiversity.  相似文献   
5.
This paper considers volcanogenic exhalation mineralization using data from 35 years of observation of fumarole activity during an earlier phase of the posteruptive activity of the Second Cone, which is one of the New Tolbachik volcanoes that were formed during the eruption at the North Vent of the Great Tolbachik Fissure Eruption (Kamchatka, 1975–1976). We describe the main types of mineral associations, identify the key mineral species and the secondary and accessory minerals, as well as the sequence of mineral generation. We provide a summary of minerals and compounds that have been identified in ejecta of fumaroles on the Second Cone.  相似文献   
6.
The crystal structure of the unstable mineral alumoklyuchevskite K3Cu3AlO2(SO4)4 [monoclinic, I2, a = 18.772(7), b = 4.967(2), c = 18.468(7) Å, β = 101.66(1)°, V = 1686(1) Å] was refined to R 1 = 0.131 for 2450 unique reflections with F ≥ 4σF hkl. The structure is based on oxocentered tetrahedrons (OAlCu 3 7+ ) linked into chains via edges. Each chain is surrounded by SO4 tetrahedrons forming a structural complex. Each complex is elongated along the b axis. This type of crystal structure was also found in other fumarole minerals of the Great Tolbachik Fissure Eruption (GTFE, Kamchatka Peninsula, Russia, 1975–1976), klyuchevskite, K3Cu3Fe3+O2(SO4)4; and piypite, K2Cu2O(SO4)2.  相似文献   
7.
The effect of the real structure of solutions on crystallization is one of the basic issues of crystallogenesis, which is also important for resolving problems of genetic mineralogy. The study of the NaNO3-H2O and KNO3-H2O model systems yielded new data on anomalous characteristics of crystal-forming systems, including morphological and kinetic properties of crystals, crystal-solution equilibrium, and physical properties of solutions (light scattering, thermal properties, IR parameters, pH), providing information on the structure of solutions. The internally consistent data confirm the previously suggested variations in structural heterogeneity of solutions related to minor (2–4%) variations in their composition, which result in numerous disturbances of monotonicity (thermal-concentration oscillations) in the liquidus curves of salts. It is shown that these variations can be caused by variable size and composition of crystal hydrate clusters. The experimental data indicate that the effect of the real solution structure on crystal morphology and crystal-solution equilibrium is enhanced in multicomponent systems, including natural crystal-forming systems. Anomalous faceting and habit, zoning, a sectorial structure of crystals, and nonuniform entrapment of admixtures cannot be ruled out in these systems.  相似文献   
8.
The crystal structure of ilinskite, NaCu5O2(SeO3)2Cl3, a rare copper selenite chloride from volcanic fumaroles of the Great fissure Tolbachik eruption (Kamchatka peninsula, Russia), has been solved by direct methods and refined to R 1?=?0.044 on the basis of 2720 unique observed reflections. The mineral is orthorhombic, Pnma, a?=?17.769(7), b?=?6.448(3), c?=?10.522(4) Å, V?=?1205.6(8) Å3, Z?=?4. The The CuOmCln coordination polyhedra share edges to form tetramers that have 'additional' O1 and O2 atoms as centers. The O1Cu4 and O2Cu4 tetrahedra share common Cu atoms to form [O2Cu5]6+ sheets. The SeO3 groups and Cl atoms are adjacent to the [O2Cu5]6+ sheets to form complex layers parallel to (100). The Na+ cations are located in between the layers. A review of mixed-ligand CuOmCln coordination polyhedra in minerals and inorganic compounds is given. There are in total 26 stereochemically different mixed-ligand Cu-O-Cl coordinations.  相似文献   
9.
The results of numerical modeling of Onega Lake climatic circulation are presented. The model used in this study was developed earlier and successfully applied to the reproduction of large-scale hydrodynamical processes in Ladoga Lake. The obtained results are of importance for the development of both models of nonreactive pollutant transport and ecosystem models of the water body. The developed model can be used to calculate currents and temperature fields for individual scenarios of external impacts on the water body, and the results of calculation of the climatic circulation can serve as initial approximations for scenario-based calculations.  相似文献   
10.
Parageorgbokiite, β-Cu5O2(SeO3)2Cl2, has been found at the second cinder cone of the Great Fissure Tolbachik Eruption, Kamchatka Peninsula, Russia. Ralstonite, tolbachite, melanothallite, chalcocyanite, euchlorine, Fe oxides, tenorite, native gold, sophiite, Na, Ca, and Mg sulfates, cotunnite, and some copper oxoselenites are associated minerals. The estimated temperature of the mineral formation is 400–625°C. The color is green, with a vitreous luster; the streak is light green. The mineral is brittle, with the Mohs hardness ranging from 3 to 4. Cleavage is not observed. The calculated density is 4.70 g/cm3. Parageorgbokiite is biaxial (+); α = 2.05(1), β = 2.05(1), and γ = 2.08(1); 2V (meas.) is ~03, and 2V (calc.) = 0(5)°. The optical orientation is X = a; other details remain unclear. The mineral is pleochroic, from grass green on X and Y to yellowish green on Z. The empirical formula calculated on the basis of O + Cl = 10 is Cu4.91Pb0.02O1.86(ScO3)2Cl2.14. The simplified formula is Cu5O2(ScO3)2Cl2. Parageorgbokiite pertains to a new structural type of inorganic compounds. Its name points out its dimorphism with georgbokiite, which was named in honor of G.B. Bokii, the prominent Russian crystal chemist (1909–2000).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号