首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地球物理   1篇
地质学   1篇
天文学   1篇
  2012年   1篇
  2011年   1篇
  1994年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
The Tochiyama landslide is one of several complex, deep-seated and large-scale landslides occurring in the Hokuriku Province in central Japan. The landslide is about 2 km long and about 500–1100 m wide; it occupies an area of approximately 150 ha and has a maximum depth of 60 m. The slide developed on a dip-slope structure, and is divisible into three layers in ascending order: older landslide debris and avalanche deposits, younger debris-avalanche deposits, and talus. The landslide complex is still active. A triangulation point on the upper part of the landslide shifted downhill by 3.3 m from 1907 to 1983, indicating an average rate of 4.3 cm/y. In 1991, the average rate of movement on the sliding surface was also 4.3 cm/y as measured by an automatic system with inclinometers installed in borehole No. 1–2. The rate measured for borehole No. 1–3, located 380 m upslope from No. 1–2, was over twice that of No. 1–2 for the same period; it has since accelerated to about 19 cm/y. Thus current movements on the basal sliding surface are inhomogeneous; the head of the slide complex is increasing the horizontal granular pressures on the lower part of the slide block.

On the basis of dating of two tephra layers and14C dating of carbonized wood intercalated within the landslide body, two stages of slide movement have been distinguished. The earlier occurred between about 46,000 to 25,000 years ago, and the latter occurred since 1361 A.D. The following sequence of events is inferred. During the middle Pleistocene, intense tectonic movements occurred in the Hokuriku Province, and as a consequence dip-slopes were developed in the Tochiyama landslide area. Low-angle fault planes (possibly representing slump features) and fracture zones then developed within flysch deposits underlying the landslide area, causing a reduction in shear strength. The erosion base level was lowered during the Würm glacial age, and due to severe erosion and incision of stream valleys, the surface slope angle rapidly increased, and toe resistance decreased. This combination of causes led to the development of a deep-seated primary landslide. As a result of an accumulation of younger deposits, regional uplift and further local erosion, stability of parts of the region decreased and led to landslide activity of a second stage. Reactivated and locally accelerating creep movements occur today and may forewarn of a stage of reactivated, hazardous rapid sliding, such as occurred with the adjacent and analogous Maseguchi landslide in 1947.  相似文献   

2.
We apply a combination of earthquake early warning system (EEWS) and real-time strong motion monitoring system (RSMS) to emergency response for a high-rise building; The Kogakuin University has a 29-story high-rise building in Shinjuku Ward, Tokyo. The proposed strategy is based on the Plan, Do, Check, Action (PDCA) Cycle to brush up the systems and the users: in the “Plan” stage, we apply EEWS and RSMS to the building, where EEWS predicts not only short-period strong ground motions but also long-period ground motions [1]. The system is built into a building announcement system, an emergency elevator control system, and an email message system, which quickly send emails to the emergency response team. Meanwhile, RSMS provides information on seismic intensities at each floor of the building via the web browser in real time using the existing network in the building. In addition, the building response and structural damage can be estimated based on this information. The network system is impervious to the earthquake damage, because the network cable has extra length, there is, however, possible that a network system does not work due to power outage. Thus, we develop the network system that has uninterruptible power-supply system (UPS) and apply it to EEWS and RSMS. The high-rise building has the emergency call units to the security control center in the building on every floor. The emergency call line, however, will be busy promptly, because it is able to use only one line. Therefore, we installed IP telephone which uses the network system on main floors. UPS will work about 30 min after a major earthquake, it is supposed to be enough time for gathering the damage information about the building during initial response. In the “Do” stage, we prepare emergency response instruction manuals and educate the faculty members and students to carry out promptly emergency response. In the “Check” stage, the validity of the proposed systems are verified by carrying out an earthquake drill in an actual high-rise building. The earthquake drill confirmed that our proposed approach is valid. In the final “Action” stage, we improve these systems and emergency response manual and educate people in the building how to use effectively these systems.  相似文献   
3.
The behavior of Io’s atmosphere during and after eclipse is investigated on the basis of kinetic theory. The atmosphere is mainly composed of sulfur dioxide (SO2) gas, which condenses to or sublimates from the frost of SO2 on the surface depending on the variation of surface temperature (~90–114 K). The atmosphere may also contain a noncondensable gas, such as sulfur monoxide (SO) or oxygen (O2), as a minor component. In the present study, an accurate numerical analysis for a model Boltzmann equation by a finite-difference method is performed for a one-dimensional atmosphere, and the detailed structure of unsteady gas flows caused by the phase transition of SO2 is clarified. For instance, the following scenario is obtained. The condensation of SO2 on the surface, starting when eclipse begins, gives rise to a downward flow of the atmosphere. The falling atmosphere then bounces upward when colliding with the lower atmosphere but soon falls again. This process of falling and bounce back of the atmosphere repeats during the eclipse, resulting in a temporal oscillation of the macroscopic quantities, such as the velocity and temperature, at a fixed altitude. For a pure SO2 atmosphere, the amplitude of the oscillation is large because of a fast downward flow, but the oscillation decays rapidly. In contrast, for a mixture, the downward flow is slow because the noncondensable gas adjacent to the surface hinders the condensation of SO2. The oscillation in this case is weak but lasts much longer than in the case of pure SO2. The present paper is complementary to the work by Moore et al. (Moore, C.H., Goldstein, D.B., Varghese, P.L., Trafton, L.M., Stewart, B. [2009]. Icarus 201, 585–597) using the direct simulation Monte Carlo (DSMC) method.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号