首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   3篇
  国内免费   1篇
测绘学   1篇
地球物理   13篇
地质学   1篇
自然地理   1篇
  2020年   2篇
  2019年   3篇
  2017年   1篇
  2016年   2篇
  2014年   1篇
  2012年   2篇
  2011年   2篇
  2009年   1篇
  2006年   1篇
  2004年   1篇
排序方式: 共有16条查询结果,搜索用时 218 毫秒
1.
Abstract Low‐angle detachment faults and thrust‐sheet top basins are common features in foreland basins. However, in stratigraphic analysis their influence on sequence architecture is commonly neglected. Usually, only eustatic sea level and changing flexural subsidence are accounted for, and when deformation is considered, the emphasis is on the generation of local thrust‐flank unconformities. This study analyses the effects of detachment angle and repetitive detachment activation on stratigraphic stacking patterns in a large thrust‐sheet top basin by applying a three‐dimensional numerical model. Model experiments show that displacement over low‐angle faults (2–6°) at moderate rates (~5.0 m kyr?1) results in a vertical uplift component sufficient to counteract the background flexural subsidence rate. Consequently, the basin‐wide accommodation space is reduced, fluvio‐deltaic systems carried by the thrust‐sheet prograde and part of the sediment supply is spilled over towards adjacent basins. The intensity of the forced regression and the interconnectedness of fluvial sheet sandstones increases with the dip angle of the detachment fault or rate of displacement. In addition, the delta plain is susceptible to the formation of incised valleys during eustatic falls because these events are less compensated by regional flexural subsidence, than they would be in the absence of fault displacement.  相似文献   
2.
Ebb-tidal deltas are highly dynamic environments affected by both waves and currents that approach the coast under various angles. Among other bedforms of various scales, these hydrodynamics create small-scale bedforms (ripples), which increase the bed roughness and will therefore affect hydrodynamics and sediment transport. In morphodynamic models, sediment transport predictions depend on the roughness height, but the accuracy of these predictors has not been tested for field conditions with strongly mixed (wave–current dominated) forcing. In this study, small-scale bedforms were observed in the field with a 3D Profiling Sonar at five locations on the Ameland ebb-tidal delta, the Netherlands. Hydrodynamic conditions ranged from wave dominated to current dominated, but were mixed most of the time. Small-scale ripples were found on all studied parts of the delta, superimposed on megaripples. Even though a large range of hydrodynamic conditions was encountered, the spatio-temporal variations in small-scale ripple dimensions were relatively small (height 0.015 m, length 0.11 m). Also, the ripples were always highly three-dimensional. These small dimensions are probably caused by the fact that the bed consists of relatively fine sediment. Five bedform height predictors were tested, but they all overestimated the ripple heights, partly because they were not created for small grain sizes. Furthermore, the predictors all have a strong dependence on wave- and current-related velocities, whereas the ripple heights measured here were only related to the near-bed orbital velocity. Therefore, ripple heights and lengths in wave–current-dominated, fine-grained coastal areas ( mm) may be best estimated by constant values rather than values dependent on the hydrodynamics. In the case of the Ameland ebb-tidal delta, these values were found to be m and m. ©2019 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
3.
Numerical models produce output with a large number of variables, grid cells and time steps. The same applies to algorithms that produce gridded datasets from sparse or abundant raw data. Further use of the resulting data products has been challenging, especially for dissemination outside the institute of origin. Due to the gradually increasing size of data products, simply downloading copies of them is becoming impossible. A gradual transition from traditional download methods to web services is therefore observed. Web services allow for on‐the‐fly access to subsets of data that were hitherto considered as indivisible granules. Here we compare the most mature candidates to serve gridded data through the web: the Open‐source Project for a Network Data Access Protocol (OPeNDAP) and Web Coverage Service (WCS) protocols. In the framework of the new Dutch National Model and Data Centre (NMDC.eu) a distributed data storage has been created by coupling OPeNDAP servers. A WCS service layer is provided for the same data. This allows us to compare OPeNDAP and WCS. Using several use cases, we compare the usability, performance and features of the two protocols.  相似文献   
4.
An 8‐year time series of weekly shoreline data collected at the Gold Coast, Australia, is used to examine the temporal evolution of a beach, focusing on the frequency response of the shoreline to time‐varying wave height and period. Intriguingly, during 2005 the movement of the shoreline at this site changed from a seasonally‐dominated mode (annual cycle) to a storm‐dominated (~monthly) mode. This unexpected observation provides the opportunity to explore the drivers of the observed shoreline response. Utilizing the calibration of an equilibrium shoreline model to explore the time‐scales of underlying beach behavior, the best‐fit frequency response (days?1) is shown to be an order of magnitude higher post‐2004, suggesting that a relatively subtle change in wave forcing can drive a significant change in shoreline response. Analysis of available wave data reveals a statistically significant change in the seasonality of storms, from predominantly occurring at the start of the year pre‐2005 to being relatively consistent throughout the year after this time. The observed change from one mode of shoreline variability to another suggests that beaches can adapt relatively quickly to subtle changes in the intra‐annual distribution of wave energy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
5.
The moisture content ws of a beach surface strongly controls the availability of sand for aeolian transport. Our predictive capability of the spatiotemporal variability in ws, which depends to a large extent on water table depth, is, however, limited. Here we show that water table fluctuations and surface moisture content observed during a 10-day period on a medium-grained (365μm) planar (1:30) beach can be predicted well with the nonlinear Boussinesq equation extended to include run-up infiltration and a soil–water retention curve under the assumption of hydrostatic equilibrium. On the intertidal part of the beach the water table is observed and predicted to continuously fall from the moment the beach surface emerges from the falling tide to just before it is submerged by the incoming tide. We find that on the lower 30% of the intertidal beach the water table remains within 0.1–0.2 m from the surface and that the sand is always saturated (ws≈20%, by mass). Higher up on the intertidal beach, the surface can dry to about 5% when the water table has fallen to 0.4–0.5 m beneath the surface. Above the high-tide level the water table is always too deep (>0.5 m) to affect surface moisture and, without precipitation, the sand is dry (ws < 5 − 8%). Because the water table depth on the emerged part of the intertidal beach increases with time irrespective of whether the (ocean) tide falls or rises, we find no need to include hysteresis (wetting and drying) effects in the surface-moisture modelling. Model simulations suggest that at the present planar beach only the part well above mean sea level can dry sufficiently (ws < 10%) for sand to become available for aeolian transport. ©2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
6.
We report on a 6‐year nearshore bathymetric dataset from the Danube Delta (Romanian Black Sea coast) that comprises 16 km of erosive, stable and accumulative low‐lying micro‐tidal beaches northward of Sf. Gheorghe arm mouth. Two to three two‐dimensional longshore sandbars exhibit a net multi‐annual cyclic (2.8–5.5 years) offshore migration (20–50 m yr?1) in a similar way to other coasts worldwide. Bar morphology and behavior on the sediment‐rich accretionary (dissipative) sector differ substantially from that on the erosive (intermediate) sector. Shoreface slope is the most important factor controlling sandbar number and behavior. It determines different wave‐breaking patterns in the surf zone, translated into different offshore sediment transport and bar zone widths along the study site. Additionally, sediment availability, as a result of the distance from the arm mouth and of the long‐term evolution of the coast, controls the sandbar volume variability. These are all ultimately reflected in the variations of sandbar migration rates and cycle periods. A non‐dimensional morpho‐sedimentary parameter is finally presented, which expresses the bar system change potential as offshore sediment transport potential across the bar zone. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
7.
A large multi-institutional nearshore field experiment was conducted at Truc Vert, on the Atlantic coast of France in early 2008. Truc Vert’08 was designed to measure beach change on a long, sandy stretch of coast without engineering works with emphasis on large winter waves (offshore significant wave height up to 8 m), a three-dimensional morphology, and macro-tidal conditions. Nearshore wave transformation, circulation and bathymetric changes involve coupled processes at many spatial and temporal scales thus implying the need to improve our knowledge for the full spectrum of scales to achieve a comprehensive view of the natural system. This experiment is unique when compared with existing experiments because of the simultaneous investigation of processes at different scales, both spatially (from ripples to sand banks) and temporally (from single swash events to several spring-neap tidal cycles, including a major storm event). The purpose of this paper is to provide background information on the experiment by providing detailed presentation of the instrument layout and snapshots of preliminary results.  相似文献   
8.
On the vertical structure of the Rhine region of freshwater influence   总被引:1,自引:0,他引:1  
An idealised three-dimensional numerical model of the Rhine region of fresh water influence (ROFI) was set up to explore the effect of stratification on the vertical structure of the tidal currents. Prandle’s dynamic Ekman layer model, in the case of zero-depth-averaged, cross-shore velocities, was first used to validate the response of the numerical model in the case of barotropic tidal flow. Prandle’s model predicted rectilinear tidal currents with an ellipse veering of up to 2%. The behaviour of the Rhine ROFI in response to both a neap and a spring tide was then investigated. For the given numerical specifications, the Rhine plume region was well mixed over the vertical on spring tide and stratified on neap tide. During spring conditions, rectilinear tidal surface currents were found along the Dutch coast. In contrast, during neap conditions, significant cross-shore currents and tidal straining were observed. Prandle’s model predicted ellipse veering of 50%, and was found to be a good indicator of ellipticity magnitude as a function of bulk vertical eddy viscosity. The modelled tidal ellipses showed that surface currents rotated anti-cyclonically whereas bottom currents rotated cyclonically. This caused a semi-diurnal cross-shore velocity shearing which was 90° out of phase with the alongshore currents. This cross-shore shear subsequently acted on the horizontal density gradient in the plume, thereby causing a semi-diurnal stratification pattern, with maximum stratification around high water. The same behaviour was exhibited in simulations of a complete spring–neap tidal cycle. This showed a pattern of recurring stratification on neaps and de-stratification on springs, in accordance with observations collected from field campaigns in the 1990’s. To understand the increase in ellipticities to 30% during neaps and the precise shape of the vertical ellipse structure, stratification has to be taken into account. Here, a full three-dimensional numerical model was employed, and was found to represent the effect of de-coupling of the upper and lower layers due to a reduction of mixing at the pycnocline.  相似文献   
9.
Thermal and optical remote sensing data were used to investigate the spatial and temporal distribution of sea surface temperature (SST) and of suspended particulate matter (SPM) in the southern North Sea. Monthly SST composites showed pronounced seasonal warming of the southern North Sea and delineated the English coastal and continental coastal waters. The East-Anglia Plume is the dominant feature of the English coastal waters in the winter and autumn SPM composites, and the Rhine region of freshwater influence (ROFI), including the Flemish Banks, is the dominant feature of the continental waters. These mesoscale spatial structures are also influenced by the evolution of fronts, such as the seasonal front separating well-mixed water in the southern Bight, from the seasonally stratified central North Sea waters. A harmonic analysis of the SST and SPM images showed pronounced seasonal variability, as well as spring-neap variations in the level of tidal mixing in the East Anglia Plume, the Rhine ROFI and central North Sea. The harmonic analysis indicates the important role played by the local meteorology and tides in governing the SST and near-surface SPM concentrations in the southern North Sea. In the summer, thermal stratification affects the visibility of SPM to satellite sensors in the waters to the north of the Flamborough and Frisian Fronts. Haline stratification plays an important role in the visibility of SPM in the Rhine ROFI throughout the year. When stratified, both regions typically exhibit low surface SPM values. A numerical model study, together with the harmonic analysis, highlights the importance of tides and waves in controlling the stratification in the southern North Sea and hence the visibility of SPM.  相似文献   
10.
This study identifies and unravels the processes that lead to stratification and destratification in the far field of a Region of Freshwater Influence (ROFI). We present measurements that are novel for two reasons: (1) measurements were carried out with two vessels that sailed simultaneously over two cross-shore transects; (2) the measurements were carried out in the far field of the Rhine ROFI, 80 km downstream from the river mouth. This unique four dimensional dataset allows the application of the 3D potential energy anomaly equation for one of the first times on field data. With this equation, the relative importance of the depth mean advection, straining and nonlinear processes over one tidal cycle is assessed. The data shows that the Rhine ROFI extends 80 km downstream and periodic stratification is observed. The analysis not only shows the important role of cross-shore tidal straining but also the significance of along-shore straining and depth mean advection. In addition, the nonlinear terms seem to be small. The presence of all the terms influences the timing of maximum stratification. The analysis also shows that the importance of each term varies in the cross-shore direction. One of the most interesting findings is that the data are not inline with several hypotheses on the functioning of straining and advection in ROFIs. This highlights the dynamic behaviour of the Rhine ROFI, which is valuable for understanding the distribution of fine sediments, contaminants and the protection of coasts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号