首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
地球物理   2篇
  2015年   1篇
  2010年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Due to differences in hydraulic conductivity and effects of well construction geometry, groundwater lateral flow through a monitoring well typically differs from groundwater flow in the surrounding aquifer. These differences must be well understood in order to apply passive measuring techniques, such as passive flux meters (PFMs) used for the measurement of groundwater and contaminant mass fluxes. To understand these differences, lab flow tank experiments were performed to evaluate the influences of the well screen, the surrounding filter pack and the presence of a PFM on the natural groundwater flux through a monitoring well. The results were compared with analytical calculations of flow field distortion based on the potential theory of Drost et al. (1968). Measured well flow field distortion factors were found to be lower than calculated flow field distortion factors, while measured PFM flow field distortion factors were comparable to the calculated ones. However, this latter is not the case for all conditions. The slotted geometry of the well screen seems to make a correct analytical calculation challenging for conditions where flow field deviation occurs, because the potential theory assumes a uniform flow field. Finally, plots of the functional relationships of the distortion of the flow field with the hydraulic conductivities of the filter screen, surrounding filter pack and corresponding radii make it possible to design well construction to optimally function during PFM applications.  相似文献   
2.
Measurement and interpretation of mass fluxes in favor of concentrations is gaining more and more interest, especially within the framework of the characterization and management of large-scale volatile organic carbon (VOC) groundwater contamination (source zones and plumes). Traditional methods of estimating contaminant fluxes and discharges involve individual measurements/calculations of the Darcy water flux and the contaminant concentrations. However, taken into account the spatially and temporally varying hydrologic conditions in complex, heterogeneous aquifers, higher uncertainty arises from such indirect estimation of contaminant fluxes. Therefore, the potential use of passive sampling devices for the direct measurement of groundwater-related VOC mass fluxes is examined. A review of current passive samplers for the measurement of organic contaminants in water yielded the selection of 18 samplers that were screened for a number of criteria. These criteria are related to the possible application of the sampler for the measurement of VOC mass fluxes in groundwater. This screening study indicates that direct measurement of VOC mass fluxes in groundwater is possible with very few passive samplers. Currently, the passive flux meter (PFM) is the only passive sampler which has proven to effectively measure mass fluxes in near source groundwater. A passive sampler for mass flux measurement in plume zones with regard to long-term monitoring (several months to a year) still needs to be developed or optimized. A passive sampler for long-term monitoring of contaminant mass fluxes in groundwater would be of considerable value in the development of risk-based assessment and management of soil and groundwater pollutions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号