首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
地球物理   1篇
地质学   14篇
海洋学   1篇
  2008年   2篇
  2005年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1990年   2篇
  1988年   1篇
  1986年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1971年   1篇
排序方式: 共有16条查询结果,搜索用时 62 毫秒
1.
The deep seismic reflection traverses across the Central Alps (NFP 20, ECORS-CROP) contain a new set of data on the lower crust which has been interpreted in different ways. One currently fashionable model depicts the European lower crust (ELC) as gently dipping below the Adriatic crust. However, this model requires that an observed sharp termination of the ELC under the internal border of the External Massifs is due to the non-transmission of organized seismic energy through the complex upper crust. This explanation is questioned as other reflections in this and similarly complex areas are recorded, and as the same sharp termination of the ELC under the internal border of the External Massifs is observed on all seismic lines for a length of 300 km. A tectonic — metamorphic cause appears to more satisfactorily explain the obeservations, and therefore an alternative model combining surface and deep geophysical data is proposed. It consists of three mutually largely decoupled tectonic levels. (1) The shallow obducted part or lid, bounded at its base by the combined Late Miocene Jura and Lombardic basal thrusts. Estimates of shortening based on balanced sections are at least about 100 km. (2) The intermediate level between the brittle-ductile transition and the top of the subducted mantle. It contains a stack of lower crust imbrications (with a minor admixture of upper mantle) accommodated by (inducted into) the ductile middle crust. Estimates of shortening based on area balancing are again of the order of slightly more than 100 km. (3) The subducted upper mantle, for which there are no reflection data.In the Central Alps the Late Miocene phase was dextrally transpressive, producing flower structures at the shallow level (External Massifs); the stacks of lower crust imbrications at the intermediate level may be the equivalent of the External Massifs at that level. Inverted flower structures of the subducted mantle are possible, but no detailed data are available.  相似文献   
2.
The term “folding” encompasses a wide range of processes, most of which are poorly understood. Jura folds, though comparatively simple, have developed by a superposition of different types of instabilities both in space and time. They are never periodic and sinusoidal and are more realistically approximated by kink bands with rounded hinges. Thrusting and kinking instabilities had closely similar thresholds, with kinks usually following and deforming thrusts. An analysis of embryonic folds shows that instabilities in the sedimentary cover were initiated primarily at inherited flaws of the basal décollement layer. They thence spread upward, often following stratigraphically higher incompetent layers in secondary décollement and there nucleating secondary instabilities before reaching the surface (disharmonic folding). Embryonic folds thus are usually narrow, emanating from secondary décollement layers that are connected with the basal décollement zone by thrusts nucleated at inherited obstacles. These are eventually overcome, permitting basal décollement to coalesce with kinking instabilities that grow downward from nuclei in higher décollement intervals. In this way folds centered in the basal décollement layer, and consequently of normal width, may be superposed on the narrow embryonic folds. The sequence and importance of the different elements may vary from place to place to result in a vast catalog of fold shapes.  相似文献   
3.
4.
A series of 8 new seismic refraction profiles were computed as extensions of the borehole controlled reflection profiles of the Po plain into the northern Apennines and the Ligurian Alps. They help to more clearly define the subsurface structure of this intricate ‘Ligurian knot’. In particular, it has been possible to identify a number of high velocity bodies, and they may be correlated with such geological entities as the Adriatic Mesozoic, ophiolites of the Apenninic Liguride nappes, and ophiolites or Mesozoic carbonates underlying the Antola flysch in the Alpine part of the knot. When combining the refraction and reflection lines, these bodies appear to be bounded by important dislocation surfaces, such as the Padanide sole thrust (Plio-Pleistocene), the Villalvernia Varzi line (Oligo-Miocene), the Ottone-Levanto line (Oligo-Miocene), and the Volpedo-Valle Salimbene fault (Oligo-Miocene; reactivated as a transfer fault in the Plio-Pleistocene). The 3D geometry may be interpreted in terms of regional kinematics and is compatible with a model that envisages an Oligo-Early Miocene NW translation of the Adriatic indenter, coupled with collapse in the Provençal-Ligurian sea and rotation of the Sardinia-Liguria complex into the roll-back of the Adriatic subduction zone. The refraction interpretations, extending to a depth of 15 km, are supplemented by data on the Moho configuration obtained for the European Geotraverse. The Moho appears to be dissected into a series of patches which may be interpreted in terms of the shallow crustal configuration and its history. In particular, the deepest patch appears to be terminated by the Volpedo-Valle Salimbene fault, which consequently would displace the entire crust.  相似文献   
5.
Laboratory experiments were conducted on the light-induced dissolution of three well defined Fe(III) (hydr)oxide phases (γ-FeOOH, α-FeOOH, and α-Fe2O3) with oxalate as reductant/ligand. Upon irradiation of an aerated γ-FeOOH suspension of pH 3, photooxidation of oxalate and photochemical formation of dissolved Fe(II) occurred according to a 1:1 stoichiometry. This was not observed with aerated α-FeOOH and α-Fe2O3 suspensions of pH 3, where photooxidation of oxalate was not accompanied by formation of appreciable concentrations of dissolved Fe(II). We hypothesize that in aerated α-FeOOH and α-Fe2O3 suspensions, oxidation of surface Fe(II) outcompetes its detachment from the crystal lattice. Also in deaerated suspensions, α-FeOOH and α-Fe2O3 behaved differently from γ-FeOOH with regard to light-induced dissolution. We interpret our results by assuming that light-induced dissolution of α-FeOOH and α-Fe2O3 in deaerated suspensions of pH 3 occurred mainly through Fe(II)-catalyzed thermal dissolution of the solid phases, where Fe(II) was initially formed by photoreductive dissolution and then predominantly via photolysis of dissolved Fe(III) oxalate complexes. With γ-FeOOH, on the other hand, dissolved Fe(II) formation occurred probably mainly through photochemical reductive dissolution under photooxidation of adsorbed oxalate. From our results we conclude that the efficiency of detachment of reduced surface iron is a key parameter of the overall kinetics of photoreductive dissolution of Fe(III) (hydr)oxides in aquatic systems, and that thermodynamically stable phases such as α-FeOOH and α-Fe2O3 are not readily dissolved in the presence of O2, even at low pH-values and in the presence of light and reductants like oxalate. We propose that redox cycling of iron at the surface of crystalline Fe(III) (hydr)oxide phases, i.e. reduction and oxidation of surface iron without transfer into solution, may be an important pathway of transformation of thermodynamically stable atmospheric Fe(III) (hydr)oxides into less stable and thus more soluble phases.  相似文献   
6.
Zusammenfassung Tektonische Lage und Sedimentationsgeschichte fassen Südalpin-Ostalpininterne (subtatrische und südlichere) Karpaten und Dinariden zu einer Einheit zusammen, die einen Teil des südlichen Kontinentalrandkomplexes der Tethys gebildet hatte. Zur Rekonstruktion dieses Kontinentalrandes ist eine palinspastische, die alpinen Deformationen entzerrende Rekonstruktion nötig. Versuche in dieser Richtung zwingen zu einer neuen Analyse des Alpen-Dinariden-Problems. Ausgehend von den gro\en prÄoligozÄnen Schubweiten in den nordvergenten Alpen und Karpaten einerseits, den südvergenten Helleniden und damit wahrscheinlich auch den Dinariden andererseits gelangt man zum Schlu\, da\ aus dem heutigen tektonischen übereinander ein palÄogeographisches Nebeneinander nur durch Annahme von mindestens zwei aufeinander folgenden Bewegungsphasen von ganz verschiedener Tendenz zu bewerkstelligen ist. Vor dem UnteroligozÄn entstand der Hauptteil des nordvergenten alpinen sowie des südvergenten dinarisch-hellenischen DeckengebÄudes. Der Vergenzwechsel zwischen dem Ostende der slowakischen Karpaten bei Koice und dem Westende der innerdinarischen Einheiten bei Zagreb verlangt eine dextrale Senke-Senke-Verschiebungszone, die heute zerrissen ist. Um den Zusammenhang wiederherzustellen und gleichzeitig palinspastischen Raum zu schaffen für die Dinariden, wird eine jungtertiÄre dextrale Verschiebung von im Osten 300 km lÄngs der insubrischen Linie s. l. postuliert, deren Implikationen besonders auch in den Westalpen und an der Karpaten-Balkan-Grenze spürbar sein müssen.
Southern Alps, Austroalpine nappes, the internal (Subtatrid etc.) units of the Carpathians and the Dinarids, on the evidence of paleogeographic development and present tectonic relations, once belonged to neighboring parts of the southern continental margin of the Mesozoic Tethys sea. Reconstruction of this margin requires palinspastic inversion of Alpine deformations. A new look at the problems involved reveals the necessity of at least two phases of vastly differing kinematics. Before the Oligocene, ± N-S compression of several hundred kilometers built up the nappe edifices of the Alps and the internal Carpathians (with northerly vergence) as well as that of the Dinarids-Hellenids (with southerly vergence). Between the eastern end of the first system in eastern Slovakia and the western end of the second near Zagreb, there must have been a zone of dextral sink-sink strike slippage which is now disrupted. In order to account for this disruption and, at the same time, to find an empty space to palinspastically accommodate the Dinarids, an Oligocene-Neogene dextral strike-slip motion of 300 km along the Insubric fault zone is required, with considerable consequences for the western Alps as well as for the Balkan-Carpathian boundary

Résumé Avant l'orogénèse alpine les Alpes méridionales, les nappes austroalpines, les Carpates occidentales internes et les Dinarides faisaient ensemble partie de la marge continentale méridionale de la Tethys mésozoÏque. Cela ressort aussi bien du développement paléogéographique que des relations tectoniques actuelles. La reconstruction de cette marge, demandant l'inversion palinspastique des déformations alpines, révèle l'activité d'au moins deux phases de cinématique notablement différente. Avant l'Oligocène, une compression nord-sud de plusieurs centaines de kilomètres au minimum aboutit à former la masse principale des nappes alpines et carpatiques internes, déversées vers le nord, et celle des Dinarides et Hellénides, déversées vers le sud. Entre la limite est en Slovaquie orientale, des premières, et la limite ouest, dans la région de Zagreb, des secondes, il devait exister une zone de failles à déplacement horizontal dextral, permettant de restituer la liaison cinématique des deux systèmes. Cette zone a été rompue ultérieurement ce qui implique l'existence d'un déplacement postérieur à l'oligocène inférieur avec un rejet horizontal dextral de 300 km de long de la faille insubrienne Ce déplacement s'impose si l'on veut remettre en place les nappes dinariques dans leur cadre paléogéographique mésozoÏque. D'importantes conséquences en résultent pour le système Balkano-Carpathique de mÊme que pour l'arc des Alpes occidentales.

, , , , . . . , , , , , , . - . , , . , , 300 , - .
  相似文献   
7.
Viscous components in Jura folding due to pressure solution include discrete stylolites in limestones and diffuse flowage, particularly viscous folding, in Triassic anhydrites. Though increase of equilibrium solubility on the boundary of the stressed solid is well understood, the kinetic aspects of transport of the solute by diffusion and the movement of pore water are not known quantitatively and can be assessed only qualitatively on the basis of observations in nature and laboratory experiments. Apparently the creation of secondary tectonic pore space — macroscopic shear and tension joints in limestones and microscopic dilatancy cracks in anhydrite — is essential; it is possibly the rate-determining process. Stylolites in limestones, though ubiquitous, are quantitatively negligible, the overwhelming mass transport having occurred along discrete surfaces of failure. Flow of anhydrite, on the other hand, has been essential for basal décollement and cushioning under the folds.  相似文献   
8.
9.
Foreland folding     
In the northern foreland of the Alps lithospheric subplate boundaries such as the Rheingraben may be distinguished from structures developed by deformation of the main plate boundary (foreland folding in the strict sense). The latter consists of a very gentle lithospheric bulge (foreland trough and welt) of regional dimensions, and superposed smaller-scale features which are sometimes compressive (Jura) and sometimes extensive (normal faults in the eastern Molasse basin). An explanation is sought in the distribution of weak and strong masses under the Alps and their foreland; a pronounced intracrustal low-velocity cushion under the Alps, and various incompetent sedimentary layers under the foreland. As the subducted lithosphere below and the competent crust above the intracrustal cushion are affected by different boundary displacements, separate stress systems are set up for the two and are superposed in the foreland. Under some circumstances the bending stresses of the lithospheric bulge may predominate and cause extensional (normal) faulting, whereas under other circumstances compression of the supra-cushion crust may be the dominant influence and cause focal mechanisms typical for horizontal compression or, where there is a suitable decollement horizon, even thrusting and folding.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号