首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   0篇
  国内免费   1篇
测绘学   1篇
大气科学   5篇
地球物理   9篇
地质学   24篇
海洋学   6篇
综合类   1篇
自然地理   5篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   4篇
  2017年   1篇
  2016年   4篇
  2014年   6篇
  2013年   2篇
  2012年   1篇
  2011年   4篇
  2010年   4篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
  1987年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1958年   1篇
  1954年   1篇
排序方式: 共有51条查询结果,搜索用时 15 毫秒
1.
An exceptionally large tsunami affected the coastline of southern Chile during the Pliocene. Its backflow eroded coarse beach and coastal dune sediments and redistributed them over the continental shelf and slope. Sandstone dykes and sills injected from the base of the resulting hyperconcentrated flow into underlying cohesive muds, assisted in plucking up large blocks of the latter and incorporating them into the flow. Locally, the rip-up intraclasts were fragmented further by smaller-scale injections to form a distinct breccia of angular to rounded mudstone clasts within a medium to coarse sandstone matrix. Sandstone sills in places mimic normal sedimentary beds, complete with structures resembling inverse gradation, planar laminae, as well as ripple and trough cross-lamination. These were probably formed by internal sediment flow and shear stress as the semi-liquefied sand was forcefully injected into cracks. In borehole cores, such sills can easily be misinterpreted as normal sedimentary beds, which can have important implications for hydrocarbon exploration.  相似文献   
2.
A number of fine-grained sericite bearing pelitic, schistose lithologies occur along the Archean (Banded Gneiss Complex)-Proterozoic (Aravalli Supergroup) contact (APC) in the Udaipur valley in NW Indian craton. These Al-rich lithologies (subsequently metamorphosed) have been described as ‘paleosols’, developed over a 3.3 Ga old Archean gneissic basement and are overlain by Paleoproterozoic Aravalli quartzite. The paleosol was developed between 2.5 and 2.1, coincident with the globally recognized Great Oxidation Event (GOE). In previous studies these paleosol sections were interpreted to have developed under reducing environment, however, the finding of a ‘ferricrete’ zone in the upper part of Tulsi Namla section (east of Udaipur) during the present study (in addition to earlier reported lithologies) has led to an alternative suggestion of oxygen-rich conditions during paleosol development. The Tulsi Namla paleosol section shows all the features characteristic of a complete paleosol section described from other Archean cratons. The paleosol includes sericite schist with kyanite as the prevalent Al-silicate in the lower part of profile while chloritoid and Fe-oxides typify the Fe-rich upper part. Alumina has remained immobile during the weathering process while Fe and Mn show a decrease in the lower part of the section and an abrupt rise in the upper part, in the ferricrete zone. The field and geochemical data indicate that the Tulsi Namla section is an in situ weathering profile and at least the upper part shows evidence of oxidizing conditions.  相似文献   
3.
4.
浮游植物作为食物链的基础,对海洋生态系统具有重要影响。黄海作为我国重要的渔场,渔业资源面临枯竭的危险,因此对该区浮游植物进行研究具有重要意义。叶绿素a浓度是反映浮游植物生物量的重要指标。利用谷歌地球引擎平台对2002-2018年的MODIS Aqua叶绿素a浓度数据进行处理,并研究其时空分布与变化特征,然后结合区域气候、水文与地理特征以及海洋表面温度、风速、盐度、光合有效辐射和混合层厚度数据分析了其分布与变化的原因。研究发现:受陆源营养物质输入、近岸上升流以及黄海中央冷水团影响,叶绿素a浓度分布呈现由近岸向黄海中部递减特征;在季风、气候、水文的控制下,受风速、海洋表面温度、光合有效辐射、中央冷水团的影响,叶绿素a浓度的最大值出现在4月份,而最小值出现在6、7月份;受苏北沿岸海域海水污染和水体富营养化影响,沿岸海域盐度明显增加,海州湾叶绿素a浓度增速较大;影响黄海叶绿素a浓度变化的环境因子较复杂,除了部分月份存在显著的相关影响因子外,在全年和各季中不存在主导影响因子。  相似文献   
5.
近20年渤海叶绿素a浓度时空变化   总被引:3,自引:0,他引:3  
浮游植物作为食物链的基础,对海洋生态系统具有重要作用。渤海作为我国最大的内海和重要渔业生物的产卵场、育幼场和索饵场,该区浮游植物研究具有重要意义。叶绿素a浓度是反映浮游植物生物量的重要指标。利用Google Earth Engine平台,对1997–2010年的宽视场海洋观测传感器(SeaWiFS)叶绿素a浓度数据和2002–2018年的水色卫星中分辨率成像光谱仪传感器(MODIS Aqua)叶绿素a浓度数据进行合并,并研究其时空变化特征。研究表明,近20年来,渤海全年叶绿素a浓度增加了14.1%,且增加显著。叶绿素a浓度在所有季节都呈现增加趋势;除11月外,其他各月都呈现稳定或增加趋势。从滦河入河口沿岸至渤海海峡的渤海中部,叶绿素a浓度增加较明显。同时也分析了海洋表面温度、风速和降水量数据。夏季渤海周边区域降水量和风速增加以及秋季海表温度的降低都有助于同季叶绿素a浓度的升高。渤海浮游植物可能受陆源营养物质输入影响较大。  相似文献   
6.
Mafic dykes intrude the composite Mt. Abu granite batholith as a minor and the last phase of magmatism. The dykes are sub-vertical, variable in width and visibly compact, however, features of alteration and shearing can be seen. The dykes occurring within the recently identified and described, Delwara Shear Zone (DWSZ), from the western margin of the Mt. Abu batholith are intensely to moderately sheared and intricately mixed with the host granitoids. The mafic dykes occurring within the shear zone bear evidence of assimilating the host granitoids during their ascent, seen as relicts, streaks and sub-rounded K-feldspar clasts in mafic dykes. The hybridization has resulted in unusual geochemical signatures of the mafic dykes such as higher silica levels, erratic and high incompatible trace element abundances and lack of any systematic trends. Mixing line calculations on the mafic dyke samples reveal between 30 to 60% felsic input into the mafic dykes. Mafic dykes outside the shear zone in the Mt. Abu are meter scale in width and generally free of felsic inclusions owing to small volumes of mafic melts. Large volume of mafic melts are required for assimilating up to 60% felsic component which has been identified as approximately 100 m wide zone within the DWSZ. Shearing has played an important role in providing the channel ways and for sustained high temperatures to allow such hybridization.  相似文献   
7.
The behavior of nickel in the Earth’s mantle is controlled by sulfide melt–olivine reaction. Prior to this study, experiments were carried out at low pressures with narrow range of Ni/Fe in sulfide melt. As the mantle becomes more reduced with depth, experiments at comparable conditions provide an assessment of the effect of pressure at low-oxygen fugacity conditions. In this study, we constrain the Fe–Ni composition of molten sulfide in the Earth’s upper mantle via sulfide melt–olivine reaction experiments at 2 GPa, 1200 and 1400 °C, with sulfide melt \(X_{{{\text{Ni}}}}^{{{\text{Sulfide}}}}=\frac{{{\text{Ni}}}}{{{\text{Ni}}+{\text{Fe}}}}\) (atomic ratio) ranging from 0 to 0.94. To verify the approach to equilibrium and to explore the effect of \({f_{{{\text{O}}_{\text{2}}}}}\) on Fe–Ni exchange between phases, four different suites of experiments were conducted, varying in their experimental geometry and initial composition. Effects of Ni secondary fluorescence on olivine analyses were corrected using the PENELOPE algorithm (Baró et al., Nucl Instrum Methods Phys Res B 100:31–46, 1995), “zero time” experiments, and measurements before and after dissolution of surrounding sulfides. Oxygen fugacities in the experiments, estimated from the measured O contents of sulfide melts and from the compositions of coexisting olivines, were 3.0?±?1.0 log units more reduced than the fayalite–magnetite-quartz (FMQ) buffer (suite 1, 2 and 3), and FMQ ??1 or more oxidized (suite 4). For the reduced (suites 1–3) experiments, Fe–Ni distribution coefficients \(K_{{\text{D}}}^{{}}=\frac{{(X_{{{\text{Ni}}}}^{{{\text{sulfide}}}}/X_{{{\text{Fe}}}}^{{{\text{sulfide}}}})}}{{(X_{{{\text{Ni}}}}^{{{\text{olivine}}}}/X_{{{\text{Fe}}}}^{{{\text{olivine}}}})}}\) are small, averaging 10.0?±?5.7, with little variation as a function of total Ni content. More oxidized experiments (suite 4) give larger values of KD (21.1–25.2). Compared to previous determinations at 100 kPa, values of KD from this study are chiefly lower, in large part owing to the more reduced conditions of the experiments. The observed difference does not seem attributable to differences in temperature and pressure between experimental studies. It may be related in part to the effects of metal/sulfur ratio in sulfide melt. Application of these results to the composition of molten sulfide in peridotite indicates that compositions are intermediate in composition (\(X_{{{\text{Ni}}}}^{{{\text{sulfide}}}}\)?~?0.4–0.6) in the shallow mantle at 50 km, becomes more Ni rich with depth as the O content of the melt diminishes, reaching a maximum (0.6–0.7) at depths near 80–120 km, and then becomes more Fe rich in the deeper mantle where conditions are more reduced, approaching (\(X_{{{\text{Ni}}}}^{{{\text{sulfide}}}}\)?~?0.28)?>?140 km depth. Because Ni-rich sulfide in the shallow upper mantle melts at lower temperature than more Fe-rich compositions, mantle sulfide is likely molten in much of the deep continental lithosphere, including regions of diamond formation.  相似文献   
8.
Major and trace element profiles of clinopyroxene grains in oceanic gabbros from ODP Hole 735B have been investigated by a combined in situ analytical study with ion probe, and electron microprobe. In contrast to the homogeneous major element compositions, trace elements (REE, Y, Cr, Sr, and Zr) show continuous core to rim zoning profiles. The observed trace element systematics in clinopyroxene cannot be explained by a simple diffusive exchange between melts and gabbros along grain boundaries. A simultaneous modification of the melt composition is required to generate the zoning, although Rayleigh fractional crystallization modelling could mimic the general shape of the profiles. Simultaneous metasomatism between the cumulate crystal and the porous melt during crystal accumulation is the most likely process to explain the zoning. Deformation during solidification of the crystal mush could have caused squeezing out of the incompatible element enriched residual melts (interstitial liquid). Migration of the melt along grain boundaries might carry these melt out of the system. This process named as synkinematic differentiation or differentiation by deformation (Natland and Dick in J Volcanol Geotherm Res 110(3–4):191–233, 2001) may act as an important magma evolution mechanism in the oceanic crust, at least at slow-spreading ridges.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号