首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   8篇
  国内免费   1篇
测绘学   1篇
大气科学   14篇
地球物理   44篇
地质学   26篇
海洋学   21篇
天文学   25篇
综合类   2篇
自然地理   7篇
  2023年   1篇
  2021年   1篇
  2020年   3篇
  2019年   5篇
  2018年   4篇
  2017年   6篇
  2016年   9篇
  2015年   5篇
  2014年   6篇
  2013年   8篇
  2012年   7篇
  2011年   2篇
  2010年   6篇
  2009年   6篇
  2008年   3篇
  2007年   5篇
  2006年   5篇
  2005年   2篇
  2004年   11篇
  2003年   4篇
  2002年   2篇
  2001年   4篇
  2000年   4篇
  1999年   4篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1991年   3篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1975年   1篇
排序方式: 共有140条查询结果,搜索用时 31 毫秒
1.
2.
Hydrographic data and composite current velocity data (ADCP and GEK) were used to examine the seasonal variations of upper-ocean flow in the southern sea area of Hokkaido, which includes the “off-Doto” and “Hidaka Bay” areas separated by Cape Erimo. During the heating season (April–September), the outflow of the Tsugaru Warm Current (TWC) from the Tsugaru Strait first extends north-eastward, and then one branch of TWC turns to the west along the shelf slope after it approaches the Hidaka Shelf. The main flow of TWC evolves continuously, extending eastward as far as the area off Cape Erimo. In the late cooling season (January–March), part of the Oyashio enters Hidaka Bay along the shallower part of the shelf slope through the area off Cape Erimo, replacing almost all of the TWC water, and hence the TWC devolves. It is suggested that the bottom-controlled barotropic flow of the Oyashio, which may be caused by the small density difference between the Oyashio and the TWC waters and the southward migration of main front of TWC, permits the Oyashio water to intrude along the Hidaka shelf slope.  相似文献   
3.
4.
5.
In 2011, the discovery of shatter cones confirmed the 28 km diameter Tunnunik complex impact structure, Northwest Territories, Canada. This study presents the first results of ground‐based electromagnetic, gravimetric, and magnetic surveys over this impact structure. Its central area is characterized by a ~10 km wide negative gravity anomaly of about 3 mGal amplitude, roughly corresponding to the area of shatter cones, and associated with a positive magnetic field anomaly of ~120 nT amplitude and 3 km wavelength. The latter correlates well with the location of the deepest uplifted strata, an impact‐tilted Proterozoic dolomite layer of the Shaler Supergroup exposed near the center of the structure and intruded by dolerite dykes. Locally, electromagnetic field data unveil a conductive superficial formation which corresponds to an 80–100 m thick sand layer covering the impact structure. Based on the measurements of magnetic properties of rock samples, we model the source of the magnetic anomaly as the magnetic sediments of the Shaler Supergroup combined with a core of uplifted crystalline basement with enhanced magnetization. More classically, the low gravity signature is attributed to a reduction in density measured on the brecciated target rocks and to the isolated sand formations. However, the present‐day fractured zone does not extend deeper than ~1 km in our model, indicating a possible 1.5 km of erosion since the time of impact, about 430 Ma ago.  相似文献   
6.
Since the discovery of shatter cones (SCs) near the village of Agoudal (Morocco, Central High Atlas Mountains) in 2013, the absence of one or several associated circular structures led to speculation about the age of the impact event, the number, and the size of the impact crater or craters. Additional constraints on the crater size, age, and erosion rates are obtained here from geological, structural, and geophysical mapping and from cosmogenic nuclide data. Our geological maps of the Agoudal impact site at the scales of 1:30,000 (6 km2) and 1:15,000 (2.25 km2) include all known occurrences of SCs in target rocks, breccias, and vertical to overturned strata. Considering that strata surrounding the impact site are subhorizontal, we argue that disturbed strata are related to the impact event. Three types of breccias have been observed. Two of them (br1‐2 and br2) could be produced by erosion–sedimentation–consolidation processes, with no evidence for impact breccias, while breccia (br1) might be impact related. The most probable center of the structure is estimated at 31°59′13.73?N, 5°30′55.14?W using the concentric deviation method applied to the orientation of strata over the disturbed area. Despite the absence of a morphological expression, the ground magnetic and electromagnetic surveys reveal anomalies spatially associated with disturbed strata and SC occurrences. The geophysical data, the structural observations, and the area of occurrence of SCs in target rocks are all consistent with an original size of 1.4–4.2 km in diameter. Cosmogenic nuclide data (36Cl) constrain the local erosion rates between 220 ± 22 m Ma?1 and 430 ± 43 m Ma?1. These erosion rates may remove the topographic expression of such a crater and its ejecta in a time period of about 0.3–1.9 Ma. This age is older than the Agoudal iron meteorite age (105 ± 40 kyr). This new age constraint excludes the possibility of a genetic relationship between the Agoudal iron meteorite fall and the formation of the Agoudal impact site. A chronolgy chart including the Atlas orogeny, the alternation of sedimentation and erosion periods, and the meteoritic impacts is presented based on all obtained and combined data.  相似文献   
7.
Most field studies of wave processes on shore platforms in front of eroding cliffs focus on a single site, revealing aspects of wave dynamics at that location. Here, we analyse data from six platforms around northeastern New Zealand and describe the fundamental control of shore platform width, gradient and elevation on wave processes, including greater attenuation of short‐period waves at lower tidal stages and increases in longer period wave energy towards the cliff toe. These data suggest that empirical formulae developed from coral‐reef environments provide better predictions of wave height on platforms than formulae currently used in shore platform models.  相似文献   
8.
A technique has been developed to determine attenuation in rocks at high temperature using a gas-media, high-pressure apparatus. A pulse transmission technique and a spectral ratio method are used to study compressional seismic properties of rocks. Seismic waves are transmitted to and from the sample through buffer rods of mullite. The effect of seismic wave reflections within the sample assembly are cancelled out by taking ratios of the spectra measured at different temperatures. In order to obtain good signal-to-noise ratio for resolving the attenuation at high pressure and temperature, special care is taken in the sample assembly and the ultrasonic coupling between the sample, buffer rods and transducers. A very tight connection of the sample-buffer rod-transducer is essential for obtaining high frequency signals (>300 kHz) at high temperature. A small mass is attached to each outside end of the transducer to drive low frequency signals (<250 kHz) into the sample. Before attenuation measurements, the sample and the buffer rods are tightly compacted in a platinum tube at high pressure and room temperature to ensure pressure seal of the sample assembly. The frequency range of measurement covers 50 to 450 kHz for the sample. Attenuation is very small in the buffer rod compared to the sample for the entire temperature range of the study. Because of the small attenuation, a wide frequency band of 50 kHz to 3.2 MHz can be covered for investigating the attenuation in the buffer rod. The technique has been used to measure attenuation at high confining pressure, and temperatures including sub- and hyper-solidus of upper mantle rocks. Therefore, effects of partial melting on attenuation can be studied.The method is applied to the attenuation measurement in a peridotite as a function of temperature to 1225°C at 200 MPa confining pressure. At high temperature, signal amplitude decays more rapidly at high frequency than at low frequency, from which attenuation (andQ) can be determined using a spectral ratio method. No frequency dependence ofQ is resolved for both the sample and the buffer rod over the entire temperature and frequency ranges of the measurement. The results show thatQ decreases rapidly with increasing temperature even in the temperature range below the solidus of peridotites. Such temperature sensitivity ofQ is probably more useful to probe thermal structure in the upper mantle than that of conductivity at temperatures below the solidus. The results in this study are compared with available seismic velocity, electrical conductivity and solidus data for peridotites, suggesting that there is no discontinuous change in both mechanical and electrical properties of peridotites at the solidus temperature. Even at hypersolidus temperatures, it appears that velocity drops and conductivity increases continuously (not abruptly) with increasing melt fraction. This implies that mechanical and electrical properties of the upper mantle will gradually change at the boundary where the geotherm crosses the solidus.  相似文献   
9.
Volcanism related to subduction of the Philippine Sea (PHS) plate began in Central Kyushu at 5 Ma, after a pause of igneous activity lasting about 10 m.y. It formed a large volcano-tectonic depression, the Hohi volcanic zone (HVZ), and has continued to the present at a decreasing eruption rate. The products are largely andesite and dacite, which became enriched in K with time. The proportion of tholeiitic to calc alkalic rocks also increases with time. Calc-alkalic high-Mg basaltic andesites (YbBs) were erupted in the early stage of the HVZ activity (5–3 Ma), and high-alumina basalts (KjBs) were erupted in the later stage (2–0 Ma). In contrast to the basalts in the HVZ, Northwest Kyushu basalts (NWKBs) have been erupted on the backarc side of the HVZ since 11 Ma, and hence are not related to the PHS plate subduction. They are mainly high-alkali tholeiitic to alkali basalt that shows no notable chemical change with time. NWKB, YbB, and KjB have MORB-normalized incompatible-element spectra that differ from each other, as is well expressed in both Nb and Sr anomalies. The patterns of KjB and NWKB are typical of those for island-arc basalt (IAB) and ocean-island basalt (OIB), respectively. YbB shows a pattern intermediate between the two. We suggest that the magma source beneath the HVZ changed in composition from an OIB-type mantle to an IAB-type mantle as the subduction of PHS plate advanced. However, the magma source remained fertile under Northwest Kyushu. In order to explain the temporal change of source mantle beneath the HVZ, we propose a model for progressive contamination of the mantle wedge, in which three processes (contamination by a slab-derived component, subtraction of magma from the mantle, and mixing of the mantle residue and slab-derived component) are repeated as subduction continues. As long as the progressive contamination of mantle wedge proceeds, its trace-element composition converges at a steady-state value for a short period. This value does not depend on the initial composition of the mantle wedge but instead on the composition of the slab-derived component. The trace-element composition of the magma produced in such a mantle wedge approaches that of the slab-derived component with time, but the major-element composition is determined by the phase relations of mantle peridotite. The slab-derived component may be basaltic liquid that is partially melted from rutile-bearing eclogite.  相似文献   
10.
Ultrasonic compressional wave velocity Vp and quality factor Qp have been measured in alkali basalt, olivine basalt and basic andesite melts in the frequency range of 3.4–22 MHz and in the temperature range of 1100–1400°C. Velocity and attenuation of the melts depend on frequency and temperature, showing that there are relaxation mechanisms in the melts. Complex moduli are calculated from the ultrasonic data. The results fit well a complex modulus of Arrhenius temperature dependence with log-normal Gaussian distribution in relaxation times of attenuation. The analysis yields average relaxation time, its activation energy, relaxed modulus, unrelaxed modulus and width of Gaussian distribution in relaxation times. Relaxed modulus is smaller (17.5 GPa) for basic andesite melt of high silica and high alumina contents than for the other two basalt melts (18.1–18.4 GPa). The most probable relaxation times decrease from ~ 3 × 10?10 s for basic andesite to ~ 10?11 s for alkali basalt at 1400°C. Activation energies of attenuation, ranging from 270 to 340 kJ mol?1 in the three melts, are highest in basic andesite. Longitudinal viscosity values and their temperature dependences are also calculated from Vp and Qp data. The volume viscosity values are estimated from the data using the shear viscosity values. Longitudinal, volume and shear viscosities and their activation energies are highest in the basic andesite melt of the most polymerized structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号