首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
地球物理   3篇
地质学   4篇
  2009年   1篇
  2008年   3篇
  2005年   1篇
  2003年   1篇
  1987年   1篇
排序方式: 共有7条查询结果,搜索用时 221 毫秒
1
1.
Tetsuro Hirono   《Tectonophysics》2003,361(3-4):205-214
The Tokai district in central Japan is located close to the convergent boundary between the Philippine Sea and Eurasian plates, and has experienced not only repeated large interplate earthquakes but also intense aseismic movement. In this paper, the spatial and temporal tectonic evolution of the Tokai district, particularly around the Omaezaki area, is discussed to assess whether the district has been and will be active or inactive. According to a geological survey, the horizontal crustal shortening strain can imply the hypothetical tectonic model that the area has been getting less active and the strain rate since the Neogene can be calculated as 12% and 2×10−6%/year, respectively. The present interseismic horizontal crustal strain and strain rate around the Omaezaki area are approximately 4×10−7% and 4×10−9%/year. By comparing these rates, the decrease since Neogene can imply the hypothetical tectonic model that the area has been getting less active influenced by the strain partitioning between the Suruga Trough and the Zenisu Thrust.  相似文献   
2.
Tetsuro Hirono   《Tectonophysics》2005,397(3-4):261-280
Geological investigation of the deformation structures and sedimentary setting of the Emi Group, a Miocene sand-rich accretionary complex, central Japan, revealed a six stage-structural evolution during shallow level accretion in a subduction zone. The early deformation (stage 1) is characterized by independent particulate flow in layer parallel faults, scaly cleavages and web structures, and upward dewatering in dish-and-pillar structures and breccia injections, while later deformation (stages 2–6) involve mappable scale folding, meso- to macro-scopic thrusts and web structures with cataclastic flow. Based on microscopic analyses of these structures, the early faulting with independent particulate flow (stage 1 deformation) is associated with dilatancy and preferred orientation of void space, whereas the later faulting with cataclastic flow (stage 2 deformation) occurs with compaction and crude preferred orientation. The former features imply more permeable fluid migration pathways, supported by the permeability measurements and direct imaging of fluid flow by X-ray CT. On the other hand, the later fault zone has lower permeability and porosity than intact rock, and plays as fluid sealing. Thus, in the early stage (stages 1), fluid flow occurs as focused flow through dilatant fault zones with independent particulate flow or fluid migration by upward dewatering forming dish-and-pillar structures and breccia injections, whereas no evidence of fluid flow is recognized at the later stages (stages 2–6). Namely the fault zones focus fluid flow during primary accretion in shallow levels, and the fluid flow is strongly controlled by the deformation mechanism. Furthermore, the change of the deformation mechanism could be effected by progressive increment of the confining pressure, accompanied with accretion and lithification in the accretionary prism. In the shallow, dilatant-faulting regime where the deformation mechanism is independent particulate flow, focused flow dominates, whereas in the deep, cataclastic regime distributed flow may play a main conduit rather than the focused flow.  相似文献   
3.
Many radioactive anomalies have been found in Mali. The occurrence of the continental U-bearing phoscrete differs considerably from that of marine sedimentary phoscrete which is being used as the raw material in the manufacturing of phosphoric acid. The results of some chemical and physical measurements on the U-bearing phoscrete will be briefly explained here and the genesis will be inferred.  相似文献   
4.
Hideki  Mukoyoshi  Tetsuro  Hirono  Hidetoshi  Hara  Kotaro  Sekine  Noriyoshi  Tsuchiya  Arito  Sakaguchi  Wonn  Soh 《Island Arc》2009,18(2):333-351
To understand the characteristics of deformation of an out-of-sequence thrust (OST) and the style of fluid flow along it, we investigated the Nobeoka Tectonic Line, which has been interpreted as a deep OST (7–9 km), in the Shimanto accretionary complex, Southwest Japan. The shear zone in the footwall differs significantly in the along-strike direction not only in thickness, which varied from 100 to 300 m, but also in lithology and mineral vein development. These variations might reflect primarily differences in lithology; that is, the sandstone-dominant shear zone with a large amount of mineral veins precipitated in microcracks is relatively thick, whereas the shale-dominant shear zone with a small amount of veins and with textures indicating highly pressurized pore fluid, is thinner. By comparison with characteristics of a shallow OST (3–5 km), we conclude that the shallow OST has experienced repeated brittle failure with rapid slip and focused fluid flow whereas the deep OST has experienced both brittle and ductile deformation, followed by fluid flow of various styles, depending on the lithology.  相似文献   
5.
We carried out thermomagnetic susceptibility analyses of fault rocks from core samples from Hole B of the Taiwan Chelungpu Fault Drilling Project (TCDP) to investigate the cause of high magnetic susceptibilities in the fault core. Test samples were thermally and mechanically treated by heating to different maximum temperatures of up to 900 °C and by high-velocity frictional tests before magnetic analyses. Thermomagnetic susceptibility analyses of natural fault rocks revealed that magnetization increased at maximum heating temperatures above 400 °C in the heating cycle, and showed three step increases, at 600 to 550 °C and at 300 °C during the cooling cycle. These behaviors are consistent with the presence of pyrite, siderite and chlorite, suggesting that TCDP gouge originally included these minerals, which contributed to the generation the magnetic susceptibility by thermomechanical reactions. The change in magnetic susceptibility due to heating of siderite was 20 times that obtained by heating pyrite and chlorite, so that only a small fraction of siderite decomposition is enough to cause the slight increase of the susceptibility observed in the fault core. Color measurement results indicate that thermal decomposition by frictional heating took place under low-oxygen conditions at depth, which prevented the minerals from oxidizing to reddish hematite. This finding supports the inference that a mechanically driven chemical reaction partly accounts for the high magnetic susceptibility. A kinetic model analysis confirmed that frictional heating can cause thermal decomposition of siderite and pyrite. Our results show that decomposition of pyrite to pyrrhotite, siderite and, to some extent, chlorite to magnetite is the probable mechanism explaining the magnetic anomaly within the Chelungpu fault zone.  相似文献   
6.
To characterize the fault-related rocks within the Chelungpu fault, we performed X-ray computed tomography (CT) image analyses and microstructural observations of Hole B core samples from the Taiwan Chelungpu-fault Drilling Project. We identified the slip zone associated with the 1999 Chi-Chi earthquake, within the black gouge zone in the shallowest major fault zone, by comparison with previous reports. The slip zone was characterized by low CT number, cataclastic (or ultracataclastic) texture, and high possibility to have experienced a mechanically fluidized state. Taking these characteristics and previous reports of frictional heating in the slip zone into consideration, we suggested that thermal pressurization was the most likely dynamic weakening mechanism during the earthquake.  相似文献   
7.
Fourier transform infrared (FTIR) microanalysis of pseudotachylytes (i.e. friction-induced melts produced by seismic slip) from the Nojima fault (Japan) reveals that earthquakes almost instantaneously expel 99 wt.% of the wall rock CO2 content. Carbon is exsolved because it is supersaturated in the friction melts. By extrapolation to a crustal-scale fault rupture, large events such as the M7.2 Kobe earthquake (1995) may yield a total production of 1.8 to 3.4 × 103 tons CO2 within a few seconds. This extraordinary release of CO2 can cause a flash fluid pressure increase in the fault plane, and therefore enhance earthquake slip or trigger aftershocks; it may also explain the anomalous discharge of carbon monitored in nearby fault springs after large earthquakes. Because carbon saturation in silicate melts is pressure-dependent, FTIR can be used as a new tool to constrain the maximum depth of pseudotachylyte formation in exhumed faults.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号