首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
  国内免费   1篇
测绘学   10篇
大气科学   4篇
地球物理   4篇
地质学   2篇
海洋学   1篇
天文学   4篇
自然地理   1篇
  2018年   4篇
  2017年   5篇
  2016年   2篇
  2015年   4篇
  2014年   2篇
  2013年   4篇
  2012年   2篇
  2009年   1篇
  1998年   2篇
排序方式: 共有26条查询结果,搜索用时 31 毫秒
1.
2.
We present an improved mascon approach to transform monthly spherical harmonic solutions based on GRACE satellite data into mass anomaly estimates in Greenland. The GRACE-based spherical harmonic coefficients are used to synthesize gravity anomalies at satellite altitude, which are then inverted into mass anomalies per mascon. The limited spectral content of the gravity anomalies is properly accounted for by applying a low-pass filter as part of the inversion procedure to make the functional model spectrally consistent with the data. The full error covariance matrices of the monthly GRACE solutions are properly propagated using the law of covariance propagation. Using numerical experiments, we demonstrate the importance of a proper data weighting and of the spectral consistency between functional model and data. The developed methodology is applied to process real GRACE level-2 data (CSR RL05). The obtained mass anomaly estimates are integrated over five drainage systems, as well as over entire Greenland. We find that the statistically optimal data weighting reduces random noise by 35–69%, depending on the drainage system. The obtained mass anomaly time-series are de-trended to eliminate the contribution of ice discharge and are compared with de-trended surface mass balance (SMB) time-series computed with the Regional Atmospheric Climate Model (RACMO 2.3). We show that when using a statistically optimal data weighting in GRACE data processing, the discrepancies between GRACE-based estimates of SMB and modelled SMB are reduced by 24–47%.  相似文献   
3.
While seismic reflection amplitudes are generally determined by real acoustical impedance contrasts, there has been recent interest in reflections due to contrasts in seismic‐Q. Herein we compare theoretical and modelled seismic reflection amplitudes for two different cases of material contrasts. In case A, we examine reflections from material interfaces that have a large contrast in real‐valued impedance () with virtually no contrast in seismic‐Q. In case B, we examine reflections from material interfaces that have virtually no contrast in but that have very large seismic‐Q contrasts. The complex‐valued reflection coefficient formula predicts non‐zero seismic reflection amplitudes for both cases. We choose physical materials that typify the physics of both case A and case B. Physical modelling experiments show significantly large reflections for both cases – with the reflections in the two cases being phase shifted with respect to each other, as predicted theoretically. While these modelling experiments show the existence of reflections that are predicted by theory, there are still intriguing questions regarding the size of the Q‐contrast reflections, the existence of large Q‐contrast reflections in reservoir rocks and the possible application of Q‐reflection analysis to viscosity estimation in heavy oilfields.  相似文献   
4.
Thisarticle presents an adaptive neuro-fuzzy inference system (ANFIS) for classification of low magnitude seismic events reported in Iran by the network of Tehran Disaster Mitigation and Management Organization (TDMMO). ANFIS classifiers were used to detect seismic events using six inputs that defined the seismic events. Neuro-fuzzy coding was applied using the six extracted features as ANFIS inputs. Two types of events were defined: weak earthquakes and mining blasts. The data comprised 748 events (6289 signals) ranging from magnitude 1.1 to 4.6 recorded at 13 seismic stations between 2004 and 2009. We surveyed that there are almost 223 earthquakes with M ≤ 2.2 included in this database. Data sets from the south, east, and southeast of the city of Tehran were used to evaluate the best short period seismic discriminants, and features as inputs such as origin time of event, distance (source to station), latitude of epicenter, longitude of epicenter, magnitude, and spectral analysis (fc of the Pg wave) were used, increasing the rate of correct classification and decreasing the confusion rate between weak earthquakes and quarry blasts. The performance of the ANFIS model was evaluated for training and classification accuracy. The results confirmed that the proposed ANFIS model has good potential for determining seismic events.  相似文献   
5.
In this paper, we consider an exact vacuum solution of the Kaluza-Klein (KK) theory, which describes nonrotating KK black holes. We investigate general properties of geodesic motion in the space-time and calculate the effective potential for null geodesics. The thermodynamical quantities as well as the gravitational lensing of the solution is calculated. We illustrate that the Carter-Penrose diagram for different parameter values resembles the Schwarzschild-like, naked and charged solutions.  相似文献   
6.
An algorithm for a one-dimensional Explicit Time-dependent cloud Model (ETM) that takes into account non-hydrostatic pressure, entrainment, cloud microphysics, lateral and vertical eddy mixing processes is developed and tested against a state-of-the-art cloud resolving three dimensional mesoscale model—the Advanced Regional Prediction System (ARPS). The numerical schemes and sub-grid scale processes are rather similar in both ETM and ARPS, although the dimensionality is different.Results show that the ETM is able to simulate the complete lifecycle for a cloud cell, featuring comparable zones of maximum vertical velocity, and overshooting layers on the cloud top. Heat and moisture fluxes within the cloud column of the ETM occur at the same level as ARPS, giving confidence towards adequate formulations in ETM. However, mass flux fields are not in good agreement; there is significant difference in intensity and the altitude where maxima occur. Sensitivity of the ARPS cloud to the amplitude and depth of the initial thermal bubble was examined; the resulting cloud showed sensitivity to both parameters. The maximum vertical velocity decreases with greater amplitude and occurs earlier. This was used as a tuning parameter to ensure similarity in the lifecycle of ETM and ARPS clouds.  相似文献   
7.
The paper is about a methodology to combine a noisy satellite-only global gravity field model (GGM) with other noisy datasets to estimate a local quasi-geoid model using weighted least-squares techniques. In this way, we attempt to improve the quality of the estimated quasi-geoid model and to complement it with a full noise covariance matrix for quality control and further data processing. The methodology goes beyond the classical remove–compute–restore approach, which does not account for the noise in the satellite-only GGM. We suggest and analyse three different approaches of data combination. Two of them are based on a local single-scale spherical radial basis function (SRBF) model of the disturbing potential, and one is based on a two-scale SRBF model. Using numerical experiments, we show that a single-scale SRBF model does not fully exploit the information in the satellite-only GGM. We explain this by a lack of flexibility of a single-scale SRBF model to deal with datasets of significantly different bandwidths. The two-scale SRBF model performs well in this respect, provided that the model coefficients representing the two scales are estimated separately. The corresponding methodology is developed in this paper. Using the statistics of the least-squares residuals and the statistics of the errors in the estimated two-scale quasi-geoid model, we demonstrate that the developed methodology provides a two-scale quasi-geoid model, which exploits the information in all datasets.  相似文献   
8.
We present a global static model of the Earth’s gravity field entitled DGM-1S based on GRACE and GOCE data. The collection of used data sets includes nearly 7 years of GRACE KBR data and 10 months of GOCE gravity gradient data. The KBR data are transformed with a 3-point differentiation into quantities that are approximately inter-satellite accelerations. Gravity gradients are processed in the instrumental frame. Noise is handled with a frequency-dependent data weighting. DGM-1S is complete to spherical harmonic degree 250 with a Kaula regularization being applied above degree 179. Its performance is compared with a number of other satellite-only GRACE/GOCE models by confronting them with (i) an independent model of the oceanic mean dynamic topography, and (ii) independent KBR and gravity gradient data. The tests reveal a competitive quality for DGM-1S. Importantly, we study added value of GOCE data by comparing the performance of satellite-only GRACE/GOCE models with models produced without GOCE data: either ITG-Grace2010s or EGM2008 depending on which of the two performs better in a given region. The test executed based on independent gravity gradients quantifies this added value as 25–38 % in the continental areas poorly covered with terrestrial gravimetry data (Equatorial Africa, Himalayas, and South America), 7–17 % in those with a good coverage with these data (Australia, North America, and North Eurasia), and 14 % in the oceans. This added value is shown to be almost entirely related to coefficients below degree 200. It is shown that this gain must be entirely attributed to gravity gradients acquired by the mission. The test executed based on an independent model of the mean dynamic topography suggests that problems still seem to exist in satellite-only GRACE/GOCE models over the Pacific ocean, where noticeable deviations between these models and EGM2008 are detected, too.  相似文献   
9.
It had long been thought that obsidian found in Iranian sites originated from Anatolia and Armenia, but new research has challenged this assumption. In this study, 68 samples of obsidian obtained from an archaeological survey of Nader‐Tepe Aslanduz were analyzed by Proton Induced X‐ray Emission (PIXE). Nader‐Tepe Aslanduz is a tell site west of the city of Aslanduz in the Parsabad county of the Ardebil province in northern Iran. The site was inhabited from the first millennium B.C. to A.D. 17, and its history may extend back to the third or fourth millennium B.C. Our chemical composition results have been combined with obsidian composition data from Turkey and Armenia and subjected to Principal Component Analysis (PCA). This analysis shows that obsidian from each location can be grouped into distinctive classes—the obsidian from Nader‐Tepe Aslanduz is therefore probably derived from volcanic outcrops of the Sahand and Sabalan region. This study has been unable to assign a known source from Anatolia and Armenia for the obsidian of Nader‐Tepe Aslanduz.  相似文献   
10.
In this paper we study the interaction between the general form of viscous varying modified cosmic Chaplygin gas and the Tachyon fluid in the framework of Einstein gravity. We want to reconstruct the Tachyon potential and total equation of state parameter graphically by using numerical methods. In the presence of deceleration parameter, the interaction between components becomes sign changeable to explain different evolutionary eras in the universe. We review the potential and total equation of state parameter in Emergent, Intermediate and Logamediate scenarios of scale factor numerically. Analysis of total equation of state parameter show that, ω tot <?1 and ω tot >?1 imply the phantom-like and quintessence-like behaviors respectively. we have checked the effects of cosmic and viscosity elements on the interaction process. Stability is checked in all the models by the squared velocity of sound.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号