首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   2篇
地球物理   4篇
  2017年   1篇
  2015年   1篇
  2009年   2篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Examples of long period Pc5 magnetic field pulsations near field-aligned current (FAC) regions in the high-latitude magnetosphere, observed by INTERBALL-Auroral satellite during January 11, April 11 and June 28, 1997 are shown. Identification of corresponding magnetosphere regions and subregions is provided by electrons and protons in the energy-range of 0.01–100 keV measured simultaneously onboard the spacecraft. The examined Pc5 pulsations reveal a compressional character. A fairly good correlation is demonstrated between these ULF Pc5 waves and the consecutive injection of magnetosheath low energy protons. The ULF Pc5 wave occurrence is observed in both upward and downward FACs.  相似文献   
2.
Field investigations were carried out to determine the occurrence of tetrachloroethene (PCE) dense nonaqueous phase liquid (DNAPL), the source zone architecture and the aquitard integrity at a 30‐ to 50‐year old DNAPL release site. The DNAPL source zone is located in the clay till unit overlying a limestone aquifer. The DNAPL source zone architecture was investigated through a multiple‐lines‐of‐evidence approach using various characterization tools; the most favorable combination of tools for the DNAPL characterization was geophysical investigations, membrane interface probe, core subsampling with quantification of chlorinated solvents, hydrophobic dye test with Sudan IV, and Flexible Liner Underground Technologies (FLUTe) NAPL liners with activated carbon felt (FACT). While the occurrence of DNAPL was best determined by quantification of chlorinated solvents in soil samples supported by the hydrophobic dye tests (Sudan IV and NAPL FLUTe), the conceptual understanding of source zone architecture was greatly assisted by the indirect continuous characterization tools. Although mobile or high residual DNAPL (S t > 1%) only occurred in 11% of the source zone samples (intact cores), they comprised 86% of the total PCE mass. The dataset, and associated data analysis, supported vertical migration of DNAPL through fractures in the upper part of the clay till, horizontal migration along high permeability features around the redox boundary in the clay till, and to some extent vertical migration through the fractures in the reduced part of the clay till aquitard to the underlying limestone aquifer. The aquitard integrity to DNAPL migration was found to be compromised at a thickness of reduced clay till of less than 2 m.  相似文献   
3.
We present a structural smoothing regularization scheme in the context of inversion of marine controlled‐source electromagnetic data. The regularizing hypothesis is that the electrical parameters have a structure similar to that of the elastic parameters observed from seismic data. The regularization is split into three steps. First, we ensure that our inversion grid conforms with the geometry derived from seismic. Second, we use a seismic stratigraphic attribute to define a spatially varying regularization strength. Third, we use an indexing strategy on the inversion grid to define smoothing along the seismic geometry. Enforcing such regularization in the inversion will encourage an inversion result that is more intuitive for the interpreter to deal with. However, the interpreter should also be aware of the bias introduced by using seismic data for regularization. We illustrate the method using one synthetic example and one field data example. The results show how the regularization works and that it clearly enforces the structure derived from seismic data. From the field data example we find that the inversion result improves when the structural smoothing regularization is employed. Including the broadside data improves the inversion results even more, due to a better balancing between the sensitivities for the horizontal and vertical resistivities.  相似文献   
4.
This paper presents the theory to eliminate from the recorded multi‐component source, multi‐component receiver marine electromagnetic measurements the effect of the physical source radiation pattern and the scattering response of the water‐layer. The multi‐component sources are assumed to be orthogonally aligned above the receivers at the seabottom. Other than the position of the sources, no source characteristics are required. The integral equation method, which for short is denoted by Lorentz water‐layer elimination, follows from Lorentz' reciprocity theorem. It requires information only of the electromagnetic parameters at the receiver level to decompose the electromagnetic measurements into upgoing and downgoing constituents. Lorentz water‐layer elimination replaces the water layer with a homogeneous half‐space with properties equal to those of the sea‐bed. The source is redatumed to the receiver depth. When the subsurface is arbitrary anisotropic but horizontally layered, the Lorentz water‐layer elimination scheme greatly simplifies and can be implemented as deterministic multi‐component source, multi‐component receiver multidimensional deconvolution of common source gathers. The Lorentz deconvolved data can be further decomposed into scattering responses that would be recorded from idealized transverse electric and transverse magnetic mode sources and receivers. This combined electromagnetic field decomposition on the source and receiver side gives data equivalent to data from a hypothetical survey with the water‐layer absent, with idealized single component transverse electric and transverse magnetic mode sources and idealized single component transverse electric and transverse magnetic mode receivers. When the subsurface is isotropic or transverse isotropic and horizontally layered, the Lorentz deconvolution decouples into pure transverse electric and transverse magnetic mode data processing problems, where a scalar field formulation of the multidimensional Lorentz deconvolution is sufficient. In this case single‐component source data are sufficient to eliminate the water‐layer effect. We demonstrate the Lorentz deconvolution by using numerically modeled data over a simple isotropic layered model illustrating controlled‐source electromagnetic hydrocarbon exploration. In shallow water there is a decrease in controlled‐source electromagnetic sensitivity to thin resistors at depth. The Lorentz deconvolution scheme is designed to overcome this effect by eliminating the water‐layer scattering, including the field's interaction with air.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号