首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地球物理   3篇
  2021年   3篇
排序方式: 共有3条查询结果,搜索用时 47 毫秒
1
1.
Spatial and temporal variations of the isotopic composition of precipitation over Thailand were investigated. The local meteoric water line for Thailand deviates slightly from the global meteoric water line, with lower slopes (7.62 ± 0.07, 7.59 ± 0.08) and intercepts (6.42 ± 0.39, 6.22 ± 0.42) using ordinary and precipitation weighted methods. Differences in spatial and temporal δ18O distributions between the tropical monsoon and tropical savanna climate zones were found due to differing moisture source contributions and seasonal precipitation patterns. The temporal data reveals that the northeast monsoon rains originate from isotopically-enriched local moisture with isotope values of −9.36 to −0.09‰ (mean − 3.73 ± 0.42‰), whereas the southwest monsoon clouds had a more significant rainout effect from Rayleigh distillation, with isotope values of −9.56 to −1.78‰ (mean − 5.40 ± 0.38‰). The precipitation amount at each site was negatively correlated with δ18O (−0.24 to −3.20‰ per 100 mm, R2 = 0.1–0.9). Furthermore, δ18O was negatively correlated with geography (latitude, altitude) for the southwest monsoon periods, as expected based on other observed correlations. However, an inverse correlation was seen in the northeast monsoon due to differing moisture transportation as part of the continental effect. The correlation coefficient (R) was higher in the southwest monsoon (−0.84 for latitude effect, −0.64 for altitude effect) than the northeast monsoon (0.67 for latitude effect, 0.35 for altitude effect). The spatial pattern of isotopic composition reflects the southwest monsoon more clearly than the northeast monsoon, but the two monsoons also have a cancelling impact on orographic patterns. An agreement of the δ18O and deuterium excess (d-excess) was a negative correlation and found to reflect precipitation sources and re-evaporation processes. The d-excess was slightly higher for the northeast monsoon, bringing moisture from the Pacific Ocean and travelling across the continent before reaching the observed stations. By contrast, the d-excess was relatively lower for the Indian Ocean's moisture in the southwest monsoon.  相似文献   
2.
This study examined the weekly water vapour isotopic composition (δ18Ov) in Thailand. The water vapour was cryogenically collected from eight sites across the country. Two observational samples were collected over one 24-h period each week (a daytime and a night-time sample), from September 2013 to September 2014. The primary aim was to investigate the environmental factors influencing water vapour isotopes. The results revealed differences in water vapour isotopic values between day and night samples. Three periods of depleted δ18Ov were associated with large-scale convective systems in September, December, and May. The statistical relationship between the climate variables and water vapour isotopes indicated that the amount of precipitation and relative humidity were the primary controls on both diurnal and seasonal isotopic variability. The temperature did not affect the δ18Ov, mainly because the atmospheric processes are a function of vertical convection rather than temperature in tropical regions. The water vapour deuterium excess (d-excess) showed greater variability in 2013 than in 2014. The d-excess variation reflected the differences in convection occurring in the day and night. In addition, the vapour phase data were combined with the local meteoric water line to identify the local water vapour line and the interaction between the isotopic composition of water vapour and liquid water. The water vapour isotopic patterns paralleled the precipitation isotopes on rainy days because of equilibrium isotopic exchange. Water vapour and precipitation were isotopically similar under low humidity but showed greater differences from each other under wetter conditions. The study results provide insight into water vapour isotopic characteristics in tropical regions and constrain the role of large-scale atmospheric processes relative to isotopic variability of water vapour in Thailand and nearby countries.  相似文献   
3.
Stable isotopic compositions (δ18O and d-excess) from 25 rivers in Thailand were analysed monthly during 2013–2015. Results indicated that monsoon precipitation fundamentally influences the river isotopes. The overland flow supplied from monsoon precipitation and human-altered flow regimes produces considerable isotopic variability. Spatial and temporal variations were observed among four principal geographical regions. The seasonality of monsoon precipitation in mountainous Thailand produced large variations in isotopic compositions because most rainfall occurred during the southwest monsoon, and dry conditions prevailed during the northeast monsoon. The northern and northeastern regions are mountainous, highland areas. Low δ18O values were found in these regions, likely because of altitude effects on precipitation. Conversely, monsoonal precipitation continually supplies rivers in southern Thailand all year round, producing higher and more consistent δ18O values than in the other regions. The Chao Phraya plain in the central region experienced enrichment of δ18O river runoff related to evaporation in irrigation systems. Larger catchment areas and longer residence times resulted in more pronounced evaporation effects, producing lower values of d-excess and local river water line slopes compared with precipitation. The isotopic differences between river waters and precipitation were utilized to determine river recharge elevations and water transit time. The methods presented here can be used to explore hydrological interactions in other tropical river basins.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号