首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   0篇
  国内免费   3篇
大气科学   1篇
地球物理   6篇
地质学   56篇
海洋学   2篇
自然地理   9篇
  2021年   4篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   6篇
  2013年   4篇
  2012年   2篇
  2011年   8篇
  2010年   8篇
  2009年   2篇
  2008年   7篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  2003年   2篇
  2002年   1篇
  2001年   3篇
  2000年   4篇
  1999年   4篇
  1996年   2篇
  1993年   1篇
排序方式: 共有74条查询结果,搜索用时 78 毫秒
1.
The Mangshan Plateau is located on the south bank of the Huang He (Yellow River) just west of the city of Zhengzhou, well outside the Loess Plateau in central China. Mixing models of the grain‐size data indicate that the loess deposits are mixtures of three loess components. Comparison of the mixing model with existing models established for a series of loess–palaeosol sequences from the Loess Plateau indicates that the Mangshan loess has been supplied from a proximal dust source, the Huang He floodplain, during major dust outbreaks. The high accumulation rates, the composition of the loess components, and especially the high proportions of a sandy loess component support this. Owing to the exceptionally high accumulation rates, the Mangshan grain size, magnetic susceptibility and carbonate records provide a high‐resolution archive of environmental and climate change. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
2.
A palaeotemperature reconstruction based on periglacial phenomena in Europe north of approximately 51 °N, is compared with high‐resolution regional climate model simulations of the marine oxygen isotope Stage 3 (Stage 3) palaeoclimate. The experiments represent Stage 3 warm (interstadial), Stage 3 cold (stadial) and Last Glacial Maximum climatic conditions. The palaeotemperature reconstruction deviates considerably for the Stage 3 cold climate experiments, with mismatches up to 11 °C for the mean annual air temperature and up to 15 °C for the winter temperature. However, in this reconstruction various factors linking climate and permafrost have not been taken into account. In particular a relatively thin snow cover and high climatic variability of the glacial climate could have influenced temperature limits for ice‐wedge growth. Based on modelling the 0 °C mean annual ground temperature proves to be an appropriate upper temperature limit. Using this limit, mismatches with the Stage 3 cold climate experiments have been reduced but still remain. We therefore assume that the Stage 3 ice wedges were generated during short (decadal time‐scale) intervals of extreme cold climate, below the mean temperatures indicated by the Stage 3 cold climate model simulations. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
3.
This paper proposes a novel history-matching method where reservoir structure is inverted from dynamic fluid flow response. The proposed workflow consists of searching for models that match production history from a large set of prior structural model realizations. This prior set represents the reservoir structural uncertainty because of interpretation uncertainty on seismic sections. To make such a search effective, we introduce a parameter space defined with a “similarity distance” for accommodating this large set of realizations. The inverse solutions are found using a stochastic search method. Realistic reservoir examples are presented to prove the applicability of the proposed method.  相似文献   
4.
Extreme value analysis provides a semiparametric method for analyzing the extreme long tails of skew distributions which may be observed when handling mining data. The estimation of important tail characteristics, such as the extreme value index, allows for a discrimination between competing distribution models. It measures the thickness of such long tailed distributions, if only a limited sample is available. This paper stresses the practical implementation of extreme value theory, which is used to discriminate a lognormal from a mixed lognormal distribution in a case study of size distributions for alluvial diamonds.  相似文献   
5.
Stochastic estimation of facies using ground penetrating radar data   总被引:3,自引:2,他引:1  
Explicitly defining large-scale heterogeneity is a necessary step of groundwater model calibration if accurate estimates of flow and transport are to be made. In this work, neural networks are used to estimate radar facies probabilities from ground penetrating radar (GPR) images, yielding stochastic facies-based models that honour the large-scale architecture of the subsurface. For synthetic GPR images, a neural network was able to correctly identify radar facies with an accuracy of approximately 90%. Manual interpretation of a set of 450 MHz GPR field data from the Borden aquifer resulted in the identification of four radar facies. Of these, a neural network was able to identify two facies with an accuracy of near 80% and one with an accuracy of 44%. The neural network was not able to identify the fourth facies, likely due to the choice of defining facies characteristics. Sequential indicator simulation was used to generate facies realizations conditioned to the radar facies probabilities. Numerical simulations indicate that significant improvements in the prediction of solute transport are possible when GPR is used to constrain the facies model compared to using well data alone, especially when data are sparse.This work was supported by funding to R. Knight under Grant No. DE-FG07–00ER15118-A000, Environmental Management Science Program, Office of Science and Technology, Office of Environment Management, United States Department of Energy (DOE). However, any opinions, findings, conclusions, or recommendations expressed herein are those of the authors and do not necessarily reflect the views of DOE. Further support was provided by a Stanford Graduate Fellowship to S. Moysey. The authors would also like to thank James Irving for his assistance with processing of the radar data.  相似文献   
6.
Geostatistically based history-matching methods make it possible to devise history-matching strategies that will honor geologic knowledge about the reservoir. However, the performance of these methods is known to be impeded by slow convergence rates resulting from the stochastic nature of the algorithm. It is the purpose of this paper to introduce a method that integrates qualitative gradient information into the probability perturbation method to improve convergence. The potential of the proposed method is demonstrated on a synthetic history-matching example. The results indicate that inclusion of qualitative gradient information improves the performance of the probability perturbation method.  相似文献   
7.
<正>The Huang Shui River,a main tributary of the Yellow River,crosses a series of tectonically subsided and uplifted areas that show different patterns of terrace formation.The distribution of fluvial terrace of the Huang Shui River is studied through topographic and sedimentologic terrace mapping.Three terraces in the Haiyan Basin,four terraces in the Huangyuan Basin,19 terraces in the Xi'ning Basin(the four high terraces may belong to another river),nine terraces in the Ping'an Basin, five terraces in the Ledu Basin and 12 terraces in the Minhe Basin are recognized.Sedimentology research shows that the geomorphologic and sedimentological pattern of the Huang Shui River,which is located at the margin of Tibet,are different from that of the rivers at other regions.The formation process of the terrace is more complicated at the Huang Shui catchment:both accumulation terrace and erosion terrace were formed in each basin and accumulation terraces were developed in some basins when erosion terraces were formed in other basins,indicating fluvial aggradation may occur in some basins simultaneously with river incision in other basins.A conceptual model of the formation process of these two kinds of fluvial terraces at Huang Shui catchment is brought forward in this paper.First,the equilibrium state of the river is broken because of climatic change and/or tectonic movement,and the river incises in all basins in the whole catchment until reaching a new equilibrium state.Then,the downstream basin subsides quickly and the equilibrium state is broken again,and the river incises at upstream basins while the river accumulates at the subsidence basin quickly until approaching a new equilibrium state again.Finally,the river incises in the whole catchment because of climatic change and/or tectonic movement and the accumulation terrace is formed at the subsidence basin while the erosion terrace is formed at other basins.The existence of the accumulation terrace implied the tectonic subsidence in the sub-basins in Huang Shui catchment.These tectonic subsidence movements gradually developed from the downstream Minhe Basin to the upstream Huangyuan Basin.Dating the terrace sequence has potential to uncover the relationship between the subsidence in the catchment and the regional tectonic at the northeastern Tibetan Plateau.  相似文献   
8.
Geologic uncertainties and limited well data often render recovery forecasting a difficult undertaking in typical appraisal and early development settings. Recent advances in geologic modeling algorithms permit automation of the model generation process via macros and geostatistical tools. This allows rapid construction of multiple alternative geologic realizations. Despite the advances in geologic modeling, computation of the reservoir dynamic response via full-physics reservoir simulation remains a computationally expensive task. Therefore, only a few of the many probable realizations are simulated in practice. Experimental design techniques typically focus on a few discrete geologic realizations as they are inherently more suitable for continuous engineering parameters and can only crudely approximate the impact of geology. A flow-based pattern recognition algorithm (FPRA) has been developed for quantifying the forecast uncertainty as an alternative. The proposed algorithm relies on the rapid characterization of the geologic uncertainty space represented by an ensemble of sufficiently diverse static model realizations. FPRA characterizes the geologic uncertainty space by calculating connectivity distances, which quantify how different each individual realization is from all others in terms of recovery response. Fast streamline simulations are employed in evaluating these distances. By applying pattern recognition techniques to connectivity distances, a few representative realizations are identified within the model ensemble for full-physics simulation. In turn, the recovery factor probability distribution is derived from these intelligently selected simulation runs. Here, FPRA is tested on an example case where the objective is to accurately compute the recovery factor statistics as a function of geologic uncertainty in a channelized turbidite reservoir. Recovery factor cumulative distribution functions computed by FPRA compare well to the one computed via exhaustive full-physics simulations.  相似文献   
9.

ANNOUNCEMENT

2009 Best Paper Award  相似文献   
10.
In this paper, a new generalized sensitivity analysis is developed with a focus on parameter interaction. The proposed method is developed to apply to complex reservoir systems. Most critical in many engineering applications is to find which model parameters and parameter combinations have a significant impact on the decision variables. There are many types of parameters used in reservoir modeling, e.g., geophysical, geological and engineering. Some parameters are continuous, others discrete, and others have no numerical value and are scenario-based. The proposed generalized sensitivity analysis approach classifies the response/decision variables into a limited set of discrete classes. The analysis is based on the following principle: if the parameter frequency distribution is the same in each class, then the model response is insensitive to the parameter, while differences in the frequency distributions indicate that the model response is sensitive to the parameter. Based on this simple idea, a new general measure of sensitivity is developed. This sensitivity measure quantifies the sensitivity to parameter interactions, and incorporates the possibility that these interactions can be asymmetric for complex reservoir modeling. The approach is illustrated using a case study of a West Africa offshore oil reservoir.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号