首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地球物理   1篇
自然地理   1篇
  2013年   1篇
  2008年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
The Ethiopian highlands are a center of diversity for numerous globally important crops. Heterogeneous landscapes, traditional agricultural practices, and inaccessibility have created and maintained diverse subsistence agroecosystems. We surveyed sixty-three farms in twelve communities of the Gamo highlands and found high levels of on-farm diversity of crop species and varieties. The extent and nature of this diversity are related to both ecological factors, namely elevation, and anthropogenic factors such as land-use history, accessibility to markets and extension, and strength and scale of farmer exchange networks. These human landscape features have the potential to both enhance and mediate effects of elevation and other environmental factors on crop diversity. The interaction of environmental and anthropogenic forces on the diversity of crops grown by farmers affects the strategies farmers employ to adapt their farming to changing conditions.  相似文献   
2.
Hydrogen peroxide can form through the interaction of pyrite and anoxic water. The oxidation of pyrite results in the precipitation of sulfates and iron oxides, high redox potentials (~ 1000 mV) and acidic pH (3–4). The oxidative potential of the resultant solution may be responsible for the oxidation of organic compounds, as observed in the subsurface of the Rio Tinto Mars analog. On Mars subsurface migration of groundwater interacting with volcanogenic massive pyrite deposits would have mobilized acidic and oxidizing fluids through large portions of the crust, resulting in the widespread deposition of sulfates and iron oxides. This groundwater could have leached substantial volumes of aquifer material and crustal rocks, thereby erasing any organic compounds possibly down to depths of hundreds of meters. Therefore, the preservation of organic biosignatures must have been severely constrained in the portions of the ancient Martian crust that were exposed to aqueous processes, calling for a redefinition of the future targets in the search for biomolecular traces of life on Mars.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号