首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地球物理   2篇
自然地理   1篇
  2021年   1篇
  2006年   1篇
  1990年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Scale effects of hydrostratigraphy and recharge zonation on base flow   总被引:2,自引:0,他引:2  
Uncertainty regarding spatial variations of model parameters often results in the simplifying assumption that parameters are spatially uniform. However, spatial variability may be important in resource assessment and model calibration. In this paper, a methodology is presented for estimating a critical basin size, above which base flows appear to be relatively less sensitive to the spatial distribution of recharge and hydraulic conductivity, and below which base flows are relatively more sensitive to this spatial variability. Application of the method is illustrated for a watershed that exhibits distinct infiltration patterns and hydrostratigraphic layering. A ground water flow model (MODFLOW) and a parameter estimation code (UCODE) were used to evaluate the influence of recharge zonation and hydrostratigraphic layering on base flow distribution. Optimization after removing spatial recharge variability from the calibrated model altered base flow simulations up to 53% in watersheds smaller than 40 km(2). Merging six hydrostratigraphic units into one unit with average properties increased base flow residuals up to 83% in basins smaller than 50 km(2). Base flow residuals changed <5% in watersheds larger than 40 and 50 km(2) when recharge and hydrostratigraphy were simplified, respectively; thus, the critical basin size for the example area is approximately 40 to 50 km(2). Once identified for an area, a critical basin size could be used to guide the scale of future investigations. By ensuring that parameter discretization needed to capture base flow distribution is commensurate with the scope of the investigation, uncertainty caused by overextending uniform parameterization or by estimating extra parameter values is reduced.  相似文献   
2.
When constructing diagnostic systems or using knowledge-based systems,e.g.in analytical chemistry,features of different type and character,represented by numbers,trajectories or linguistic variables suchas intensities or colours,must be considered.To find neighbourhoods or to fill in missing values,thenotion of similarity is of essential importance.The paper presents a new fuzzy-set-theory-based approachto quantifying similarity and provides a system of rules to be implemented into the diagnostic part of theknowledge base to be used.  相似文献   
3.
Groundwater flow model construction is often time-consuming and costly, with development ideally focused on a specific purpose, such as quantifying well capture from water bodies or providing flow fields for simulating advective transport. As environmental challenges evolve, the incentive to re-purpose existing groundwater flow models may increase. However, few studies have evaluated which characteristics of groundwater flow models deserve greatest consideration when re-purposing models for groundwater age and advective transport simulations. In this paper, we compare simulated age metrics produced by three MODFLOW-MODPATH models of the same area but with differing levels of complexity (layering and heterogeneity). Comparisons are made at three watershed scales (HUC 8 to HUC 12). Groundwater age metrics, specifically the young fraction and median age of the young and old fractions, are used for evaluation because they relate to intrinsic susceptibility of aquifers and are simpler to interpret than full age distributions used for advective transport. Results indicate that: (1) the young fraction is less sensitive to model layering than the median age of young and old fractions, suggesting that simple models may suffice for basic intrinsic susceptibility assessments; (2) water table mounding and associated discharge into partially penetrating boundaries, such as head-water streams, is important for simulating both the young fraction and the median age of the young fraction; and (3) the influence of partially penetrating head-water streams is maintained regardless of the porosity distribution. Results of this work should aid modelers with evaluating the appropriateness of re-purposing existing groundwater flow models for age simulations.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号