首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   723篇
  免费   25篇
  国内免费   1篇
测绘学   9篇
大气科学   81篇
地球物理   141篇
地质学   254篇
海洋学   64篇
天文学   116篇
综合类   1篇
自然地理   83篇
  2022年   3篇
  2021年   5篇
  2020年   10篇
  2019年   13篇
  2018年   17篇
  2017年   17篇
  2016年   17篇
  2015年   12篇
  2014年   30篇
  2013年   54篇
  2012年   33篇
  2011年   35篇
  2010年   39篇
  2009年   54篇
  2008年   42篇
  2007年   39篇
  2006年   45篇
  2005年   16篇
  2004年   11篇
  2003年   17篇
  2002年   19篇
  2001年   10篇
  2000年   17篇
  1999年   10篇
  1998年   9篇
  1997年   4篇
  1996年   7篇
  1995年   6篇
  1994年   13篇
  1993年   13篇
  1992年   8篇
  1991年   14篇
  1990年   7篇
  1989年   7篇
  1988年   5篇
  1987年   5篇
  1986年   7篇
  1985年   10篇
  1984年   5篇
  1983年   7篇
  1982年   6篇
  1981年   6篇
  1980年   8篇
  1979年   7篇
  1978年   9篇
  1977年   5篇
  1976年   5篇
  1975年   4篇
  1974年   3篇
  1973年   2篇
排序方式: 共有749条查询结果,搜索用时 31 毫秒
1.
Evidence was found that uptake of lead from seawater in both model and natural systems by the leaves of the seagrass Zostera muelleri does occur for live, dead and scraped leaves at all the lead concentrations tested. Positive uptake of lead was measured using the three analytical techniques of radio-tracer, differential pulse anodic stripping voltammetry and atomic absorption spectrometry; similar uptake profiles were obtained for each technique. Profiles always showed an initial rapid uptake phase followed by a gradual transition to a plateau phase at which an approximate equilibrium between lead attached to seagrass and free ionic lead in seawater was reached. The presence of active lead uptake processes was indicated in experiments which attempted to remove lead from leaves by a chelating agent.  相似文献   
2.
3.
In the northern limb of the 2.06-Ga Bushveld Complex, the Platreef is a platinum group elements (PGE)-, Cu-, and Ni-mineralized zone of pyroxenite that developed at the intrusion margin. From north to south, the footwall rocks of the Platreef change from Archaean granite to dolomite, hornfels, and quartzite. Where the footwall is granite, the Sr-isotope system is more strongly perturbed than where the footwall is Sr-poor dolomite, in which samples show an approximate isochron relationship. The Nd-isotope system for samples of pyroxenite and hanging wall norite shows an approximate isochron relationship with an implied age of 2.17 ± 0.2 Ga and initial Nd-isotope ratio of 0.5095. Assuming an age of 2.06 Ga, the ɛNd values range from −6.2 to −9.6 (ave. −7.8, n = 17) and on average are slightly more negative than the Main Zone of the Bushveld. These data are consistent with local contamination of an already contaminated magma of Main Zone composition. The similarity in isotope composition between the Platreef pyroxenites and the hanging wall norites suggests a common origin. Where the country rock is dolomite, the Platreef has generally higher plagioclase and pyroxene δ 18O values, and this indicates assimilation of the immediate footwall. Throughout the Platreef, there is considerable petrographic evidence for sub-solidus interaction with fluids, and the Δ plagioclase–pyroxene values range from −2 to +6, which indicates interaction at both high and low temperatures. Whole-rock and mineral δD values suggest that the Platreef interacted with both magmatic and meteoric water, and the lack of disturbance to the Sr-isotope system suggests that fluid–rock interaction took place soon after emplacement. Where the footwall is granite, less negative δD values suggest a greater involvement of meteoric water. Consistently higher values of Δ plagioclase–pyroxene in the Platreef pyroxenites and hanging wall norites in contact with dolomite suggest prolonged interaction with CO2-rich fluid derived from decarbonation of the footwall rocks. The overprint of post crystallization fluid–rock interaction is the probable cause of the previously documented lack of correlation between PGE and sulfide content on the small scale. The Platreef in contact with dolomite is the focus of the highest PGE grades, and this suggests that dolomite contamination played a role in PGE concentration and deposition, but the exact link remains obscure. It is a possibility that the CO2 produced by decarbonation of assimilated dolomite enhanced the process of PGE scavenging by sulfide precipitation.  相似文献   
4.
5.
6.
7.
Methods are described for estimating the parameters of the Fisher-Tippet Type 1 extreme value distribution and associated return values from measured extremes, such as maximum wave height. A comparison of these methods, with simulated data, shows that those using Gumbel's plotting position are least satifactory. Maximum likelihood methods give the smallest mean square errors, but the very much simpler method of moments is nearly as good.  相似文献   
8.
Sediment supply and pre-existing shoreline morphology are crucial factors in controlling coastal changes due to sea-level rise. Using examples from both southeast and northeast Ireland, it can be shown that sea-level change may trigger a sequence of events which leads to both static and dynamic shoreline equilibrium. Cliff erosion and longshore sediment movement in east Co. Wexford has led to injection of sediment onto the shelf, and the growth, under both wave and tide regimes, of linear offshore shoals. These shoals now control the pattern of shoreline erosion and provide a template for possible stepwise evolution of the coast under any future sea-level rise. In contrast, the nearby coast of south Co. Wexford comprises a series of coarse clastic barriers moving monotonously onshore, via overwash processes. Here the behavior of the barrier is conditioned by the antecedent morphology of both the beach face and stream outlet bedforms. Finally, the rock platform coast of Co. Antrim presents a far more resistant shoreline to incident marine processes, yet even here there is strong evidence of present process control over so-called ‘raised’ platforms and embayments. It is concluded that coastal sediment supply and dynamics, together with coastal morphology and its interaction with waves, present a far more complex variety of sea-level indicators than is normally acknowledged.  相似文献   
9.
R. M. Carter  L. Carter 《Marine Geology》1996,130(3-4):181-202
The Bounty Channel and Fan system provides the basis for a model for deep-sea channel and fan development in a rifted continental margin setting. The sedimentary system results from an interplay between tectonics (fan location; sediment source), turbidity currents (sediment supply), geostrophic currents (sediment reworking and distribution) and climate (sea level, and hence sediment supply and type). Today, sediment is shed from the collisional Southern Alps, part of the Pacific/Indo-Australian plate margin, and passes east across the adjacent shelf and into the Otago Fan complex at the head of the Bounty Trough. Paths of sediment supply, and locations of sediment deposition, are controlled by the bathymetry of the Bounty Trough, with axial slopes as high as 37 m/km (2°) towards the trough head, diminishing to around 3.5 m/km (0.2°) along the trough axis. The Bounty Fan is located 800 km further east, where the Bounty Channel debouches onto abyssal oceanic crust at the mouth of the Bounty Trough. The Bounty Fan comprises a basement controlled fan-channel complex with high leveed banks exhibiting fields of mud waves, and a northward-elongated middle fan. Channel-axis gradients diminish from 6 m/km (0.35°) or more on the upper fan to less than 1 m/km (<0.06°) on the lower fan. Parts of the left bank levee and almost the entire middle fan are being eroded and re-entrained within a Deep Western Boundary Current (DWBC), which passes along the eastern New Zealand margin at depths below 2000 m. The DWBC is the prime source of deep, cold water flow into the Pacific Ocean, with a volume of ca. 20 Sv and velocities up to 4 cm/s or greater. The mouth of the Bounty Channel, at a depth of 4950 m at the south end of the middle fan, acts as a point source for an abyssal sediment drift entrained northward under the DWBC at depths below 4300 m. The Bounty Fan probably originated in the early to middle Neogene, but has mostly been built during the last 3 Myr (Plio-Pleistocene), predominantly as climate-controlled sedimentary couplets of terrigenous, micaceous mud (acoustically reflective; glacial) and biopelagic ooze (acoustically transparent; interglacial), deposited under the pervasive influence of the DWBC.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号