首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
地球物理   3篇
地质学   2篇
天文学   4篇
  2018年   1篇
  2017年   3篇
  2012年   1篇
  2009年   2篇
  2006年   1篇
  2004年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
The Debrecen Photoheliographic Data catalogue is a continuation of the Greenwich Photoheliographic Results providing daily positions of sunspots and sunspot groups. We analyse the data for sunspot groups focussing on meridional motions and transfer of angular momentum towards the solar equator. Velocities are calculated with a daily shift method including an automatic iterative process of removing the outliers. Apart from the standard differential rotation profile, we find meridional motion directed towards the zone of solar activity. The difference in measured meridional flow in comparison to Doppler measurements and some other tracer measurements is interpreted as a consequence of different flow patterns inside and outside of active regions. We also find a statistically significant dependence of meridional motion on rotation velocity residuals confirming the transfer of angular momentum towards the equator. Analysis of horizontal Reynolds stress reveals that the transfer of angular momentum is stronger with increasing latitude up to about \(40^{\circ}\), where there is a possible maximum in absolute value.  相似文献   
2.
We present an analysis of the geoeffectiveness of corotating interaction regions (CIRs), employing the data recorded from 25 January to 5 May 2005 and throughout 2008. These two intervals in the declining phase of Solar Cycle 23 are characterised by a particularly low number of interplanetary coronal mass ejections (ICMEs). We study in detail how four geomagnetic-activity parameters (the Dst, Ap, and AE indices, as well as the Dst time derivative, \(\mathrm{dDst}/\mathrm{d}t\)) are related to three CIR-related solar wind parameters (flow speed, \(V\), magnetic field, \(B\), and the convective electric field based on the southward Geocentric solar magnetospheric (GSM) magnetic field component, \(\mathit{VB}_{s}\)) on a three-hour time resolution. In addition, we quantify statistical relationships between the mentioned geomagnetic indices. It is found that Dst is correlated best to \(V\), with a correlation coefficient of \(\mathrm{cc}\approx0.6\), whereas there is no correlation between \(\mathrm{dDst}/\mathrm{d}t\) and \(V\). The Ap and AE indices attain peaks about half a day before the maximum of \(V\), with correlation coefficients ranging from \(\mathrm{cc}\approx0.6\) to \(\mathrm{cc}\approx0.7\), depending on the sample used. The best correlations of Ap and AE are found with \(\mathit{VB}_{s}\) with a delay of 3 h, being characterised by \(\mathrm{cc}\gtrsim 0.6\). The Dst derivative \(\mathrm{dDst}/\mathrm{d}t\) is also correlated with \(\mathit{VB}_{s}\), but the correlation is significantly weaker \(\mathrm{cc}\approx 0.4\)?–?0.5, with a delay of 0?–?3 h, depending on the employed sample. Such low values of correlation coefficients indicate that there are other significant effects that influence the relationship between the considered parameters. The correlation of all studied geomagnetic parameters with \(B\) are characterised by considerably lower correlation coefficients, ranging from \(\mathrm{cc}=0.3\) in the case of \(\mathrm{dDst}/\mathrm{d}t\) up to \(\mathrm{cc}=0.56\) in the case of Ap. It is also shown that peak values of geomagnetic indices depend on the duration of the CIR-related structures. The Dst is closely correlated with Ap and AE (\(\mathrm{cc}=0.7\)), Dst being delayed for about 3 h. On the other hand, \(\mathrm{dDst}/\mathrm{d}t\) peaks simultaneously with Ap and AE, with correlation coefficients of 0.48 and 0.56, respectively. The highest correlation (\(\mathrm{cc}=0.81\)) is found for the relationship between Ap and AE.  相似文献   
3.
We study the seismic vulnerability of the interdependent European gas and electricity transmission networks from a topological point of view, whereby the electricity network depends on the gas network through gas‐fired power plants. First, we assessed the seismic response for each independent network; then we analyzed the increased vulnerability due to their interdependency. We implemented a probabilistic reliability model that encompasses the spatial distribution of both network structures and their seismic hazard exposure using a Geographic Information System. We characterized the network interdependency using the strength of coupling of the interconnections, together with the seismic response of the independent—gas—network. We calculated the network fragility curves of the independent and dependent networks in terms of various performance measures (connectivity loss, power loss, and impact on the population) and found that the gas network is more seismically vulnerable than the electricity network. The interdependency introduces an extra vulnerability to the electricity network response that decreases with the extensiveness of the networks' damage states. Damage was also evaluated at a local level in order to identify the most vulnerable parts of the network, where it was found that the potential for the highest power loss is located in southeast Europe. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
4.
A non‐parametric empirical approach, called the conditional average estimator (CAE) method, has been implemented for the estimation of the flexural deformation capacity of reinforced concrete rectangular columns expressed in terms of the ultimate (‘near collapse’) drift. Two databases (PEER and Fardis), which represent subsets of the original databases, were used. Four input parameters were employed in the basic model: axial load index, index related to confinement, shear span index, and concrete compressive strength. The results of analyses suggest that, in general, ultimate drift decreases with increasing axial load index, and increases with better confinement. An increase in the shear span‐to‐depth ratio has a beneficial effect until a turning point is reached. After that the opposite trend can be observed, i.e. a decrease in the ultimate drift with further increasing of the shear span‐to‐depth ratio. No clear trend is observed in the case of concrete compressive strength. The predictions, obtained by using the Fardis database are in general somewhat larger than the predictions from the PEER database, due to the difference in the definition of ultimate drift. The scatter of results is large. The local coefficient of variation, which is a measure for dispersion, amounts to about 0.2–0.5. The ultimate drifts obtained by using the two databases, were compared with the values predicted by the Eurocode 8 empirical formula. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
5.
Predictions of energy dissipation capacity and of the deterioration of deformation capacity due to cumulative damage have been made by means of a non‐parametric empirical approach, called the conditional average estimator method, using empirical data on rectangular reinforced concrete columns that failed in flexure. Five input parameters were used: axial load index, index related to confinement, shear span index, concrete compressive strength, and longitudinal reinforcement index. The energy capacity was expressed in three different normalized forms and the deterioration of deformation capacity was defined as the ratio of the cyclic to the monotonic ultimate drift. The longitudinal reinforcement index, the index related to confinement, and the axial load index are the most influential input parameters in the case of energy capacity, whereas the latter two indices exhibit the most significant influence in the case of the drift ratio. Energy capacity decreases with an increasing axial load index, whereas it increases with increasing longitudinal reinforcement and with better confinement. In the case of the shear span index, the trend is more complex. Normal concrete has a higher energy dissipation capacity than high‐strength concrete. Similar trends are observed for the drift ratio, with the exception of the influence of the axial load index, where the trend is opposite. The dispersion of the results is high. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
6.
Sunspot position data obtained from Kanzelhöhe Observatory for Solar and Environmental Research (KSO) sunspot drawings and white light images in the period 1964 to 2016 were used to calculate the rotational and meridional velocities of the solar plasma. Velocities were calculated from daily shifts of sunspot groups and an iterative process of calculation of the differential rotation profiles was used to discard outliers. We found a differential rotation profile and meridional motions in agreement with previous studies using sunspots as tracers and conclude that the quality of the KSO data is appropriate for analysis of solar velocity patterns. By analyzing the correlation and covariance of meridional velocities and rotation rate residuals we found that the angular momentum is transported towards the solar equator. The magnitude and latitudinal dependence of the horizontal component of the Reynolds stress tensor calculated is sufficient to maintain the observed solar differential rotation profile. Therefore, our results confirm that the Reynolds stress is the dominant mechanism responsible for transport of angular momentum towards the solar equator.  相似文献   
7.
Site and laboratory investigation of the Slano blato landslide   总被引:2,自引:0,他引:2  
The Slano blato landslide is situated above the village of Lokavec, in the western part of Slovenia. This area is one of the seismically most active parts of the country. Considering just the last decade, movement of the landslide was observed in November 2000, when the displaced material reached a velocity of 60–100 m/day. Silty and clayey gravel above flysch layers of marl and sandstone formed the landslide mass.Geotechnical investigations of the landslide were performed in 2003 and 2004, when the depth of the landslide was determined, as well as the geotechnical parameters and the sliding mechanism. Rheological tests were also carried out for further analysis. Based on the investigation results and the observed landslide velocity, the landslide was classified as an earth flow. Inclinometer measurements showed that the landslide has two shear surfaces, with different behaviour shown as each.A stability analysis was carried out numerically by applying the Mohr–Coulomb and Burger elasto–plastic models. The Mohr–Coulomb model indicated that the high water level influences the landslide instability. In the case of the Burger elasto-plastic model, a higher velocity was calculated, at a water content of between 35 and 40%.  相似文献   
8.
Within the last 10 years Slovenia has been constructing its highway network. The Golovec tunnel, as a part of Slovenia's capital ring is thus one of the most important connections of Ljubljana to the east and to the north. It is a double tube three-lane tunnel in soft rock with small to medium overburden. Its construction, following NATM, caused huge problems to all parties involved. The tunnel support was well monitored during its construction, which gave the authors a good opportunity to analyse the results.The Golovec tunnel is constructed through one of few hills surrounding Ljubljana, of Carboniferous age, consisting of clastic rock: siltstone, claystone and sandstone. Golovec hill belongs to the first of two overthrusting zones from this area, so the rock is strongly faulted.Tunnel monitoring consisted of daily 3-D tunnel tube displacement measurements in 97 measuring sections, and of two measuring sections within the tunnel with more complex measuring equipment, to monitor stress changes and rock deformations around both tunnel tubes. Monitoring of the surface 3-D movements gave us the opportunity to study the influence of the tunnel construction on the surface above it. The tunnel, its geology, construction procedure and monitoring results are described in the first part of the paper.The second part consists of the interpretation of monitored results, with an emphasis on results concerning development and evolution of the excavation-damaged zone in the rock around the tunnel. Back-calculations, performed as a basis for the interpretation procedure, are also presented in this part. Calculations of the propagation of the tunnel destressed zone and stress-field around the tunnel, up to the surface, were performed by means of numerical model with the finite difference method. The evolution of tunnel displacements and their prediction was based on the use of Back Propagation Neural Networks, whose principles are presented in one chapter of this paper. Results showed that the most important, for the final settlement at the surface above the tunnel, was the time of installation and rigidity of the primary support. On the basis of the calculated final displacements, this support could easily be strengthened in a short time, when necessary.  相似文献   
9.
The sunspot position published in the data bases of the Greenwich Photoheliographic Results (GPR), the US Air Force Solar Optical Observing Network and National Oceanic and Atmospheric Administration (USAF/NOAA), and of the Debrecen Photoheliographic Data (DPD) in the period 1874 to 2016 were used to calculate yearly values of the solar differential-rotation parameters \(A\) and \(B\). These differential-rotation parameters were compared with the solar-activity level. We found that the Sun rotates more differentially at the minimum than at the maximum of activity during the epoch 1977?–?2016. An inverse correlation between equatorial rotation and solar activity was found using the recently revised sunspot number. The secular decrease of the equatorial rotation rate that accompanies the increase in activity stopped in the last part of the twentieth century. It was noted that when a significant peak in equatorial rotation velocity is observed during activity minimum, the next maximum is weaker than the previous one.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号