首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地球物理   1篇
地质学   2篇
  2021年   1篇
  2011年   1篇
  2007年   1篇
排序方式: 共有3条查询结果,搜索用时 62 毫秒
1
1.
The scope of this paper is the analysis of full-height bridge abutments on pile foundations, installed through soft soils, with a commercially available finite element software and soil model. Well-documented centrifuge test data were used as reference. Excess pore pressures developed in the clay layer, vertical and horizontal movements of the soft clay, pile displacements and bending moments, and abutment wall bending moments were chosen for comparison, since they are the most critical parameters for observation and design. Additionally, the validity of an analytical method (SIMPLE), which was proposed to analyse the piled abutments subjected to nearby surcharge loading, is discussed. This soil-structure interaction problem has been investigated over the last three decades, using either field or centrifuge tests, accompanied by FE analyses. Special modelling techniques and advanced soil models were used in these numerical studies to establish the most representative field behaviour. However, since the codes or techniques used in these advanced FE analyses are neither very practical nor easily accessible, it is difficult to employ them consistently in design. Thus, the results of this study are intended to provide some guidelines for designers, and to bring insight about the interacting mechanisms into the design process.  相似文献   
2.
Lai  C. G.  Bozzoni  F.  Conca  D.  Famà  A.  Özcebe  A. G.  Zuccolo  E.  Meisina  C.  Bonì  R.  Bordoni  M.  Cosentini  R. M.  Martelli  L.  Poggi  V.  Viana da Fonseca  A.  Ferreira  C.  Rios  S.  Cordeiro  D.  Ramos  C.  Molina-Gómez  F.  Coelho  C.  Logar  J.  Maček  M.  Oblak  A.  Ozcep  F.  Bozbey  I.  Oztoprak  S.  Sargin  S.  Aysal  N.  Oser  C.  Kelesoglu  M. K. 《Bulletin of Earthquake Engineering》2021,19(10):4013-4057
Bulletin of Earthquake Engineering - Microzonation for earthquake-induced liquefaction hazard is the subdivision of a territory at a municipal or submunicipal scale in areas characterized by the...  相似文献   
3.
This paper presents an integrated, earthquake-damage assessment that standardizes and quantifies methods of analysis. The proposed methodology evaluates all damage-causing phenomena, both individually and in combination. This approach inherently relates to soil-structure interactions by quantifying site-specific geotechnical and structural properties. Specifically considered is ground shaking, the primary damage-causing phenomenon. Also evaluated are the collateral effects of liquefaction, degradation of seismic-bearing capacity and slope failure (landslides). The methodology incorporates a literature-derived probabilistic assessment of damage-causation, and is interpreted and presented as single numbers deemed “Damage Grades.” These damage grades integrate the initial probabilistic evaluation with professional experience and judgment in order to determine potential damage to a particular structure at a particular location. This methodology was applied, with success, to two different locations in Istanbul, Turkey. It should be tested by engineering geologists and geotechnical engineers, for it may be applicable to earthquake-prone areas elsewhere.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号