首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
地球物理   5篇
地质学   1篇
海洋学   2篇
天文学   6篇
  2017年   1篇
  2010年   1篇
  2007年   1篇
  2006年   1篇
  2001年   1篇
  1996年   2篇
  1995年   2篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1980年   1篇
  1977年   1篇
排序方式: 共有14条查询结果,搜索用时 281 毫秒
1.
Paleomagnetic measurements have been carried out on 103 specimens taken at about 15 cm intervals in a sea cliff exposing the marine terrace formation. Secondary components were removed by partial demagnetization in a peak field of 200 Oe. Two short reversed magnetozones are recognized. Geological and biostratigraphical evidence indicates that they are equivalent to the Blake event, which was first reported by Smith and Foster (1969) (Science 163, 565–567) from the North Atlantic deep-sea cores. The present result suggests a split nature for the Blake Event.  相似文献   
2.
We have studied the solar wind-magnetosphere interaction using a 3-D electromagnetic particle code. The results for an unmagnetized solar wind plasma streaming past a dipole magnetic field show the formation of a magnetopause and a magnetotail, the penetration of energetic particles into cusps and radiation belt and dawn-dusk asymmetries. The effects of interplanetary magnetic field (IMF) have been investigated in a similar way as done by MHD simulations. The simulation results with a southward IMF show the shrunk magnetosphere with great particle entry into the cusps and nightside magnetosphere. This is a signature of a magnetic reconnection at the dayside magnetopause. After a quasi-stable state is established with an unmagnetized solar wind we switched on a solar wind with an northward IMF. In this case the significant changes take place in the magnetotail. The waving motion was seen in the magnetotail and its length was shortened. This phenomena are consistent with the reconnections which occur at the high latitude magnetopause. In our simulations kinetic effects will determine the self-consistent anomalous resistivity in the magnetopause that causes reconnections.Deceased January 24, 1993; R. Bunemanet al. 1993.  相似文献   
3.
Ken-Ichi  Hirauchi 《Island Arc》2006,15(1):156-164
Abstract   Serpentinite bodies in the Kurosegawa Belt are mapped along fault boundaries between the Cretaceous Sanchu Group (forearc basin-fill sediments) and the rocks of the Southern Chichibu Belt (Jurassic to Early Cretaceous accretionary prism) in the northwestern Kanto Mountains, central Japan. The serpentinites were divided into three types based on microtextures and combinations of serpentine minerals: massive, antigorite and chrysotile serpentinites. Massive serpentinite retains initial pseudomorphic textures without any deformation after serpentinization. Antigorite serpentinite exhibits shape-preferred orientation of antigorite replacing the original lizardite and/or chrysotile to form pseudomorphs. It has porphyroclasts of chromian spinel, and is characterized by ductile deformation under relatively high-pressure–temperature conditions. Chrysotile serpentinite shows evidence for overprinting of pre-existing serpentinite features under shallow, low-temperature conditions. It exhibits unidirectional development of chrysotile fibers. Foliations in antigorite and chrysotile serpentinites strike parallel to the elongate direction of the serpentinite bodies, suggesting a continuous deformation during solid-state intrusion along the fault zones after undergoing complete serpentinization at deeper levels (lower crust and upper mantle).  相似文献   
4.
To identify water with an excess nitrate concentration to phosphate ratio and its potential source, the nutrient concentrations in the Tsushima Strait (TSS) were investigated over ten cruises in August and September 2007–2014, excluding 2010. On the basis of the Redfield ratio, water with an excess nitrate concentration of >1 μM (positive ExNOx water) was identified below the surface mixed layer during four cruises in 2011–2013. Positive ExNOx water was present mainly in less-saline (<34) waters with a density of 22–25 σ θ , and 25–75 m depth. However, in August 2012, positive ExNOx was detected in dense (25–25.5 σ θ ) and deep (50–110 m depth) waters near the salinity maximum, although the salinity during this period was significantly lower than that in other years. The horizontal length of positive ExNOx water was >100 km across the TSS during two cruises in August 2012 and September 2013, respectively. According to multi-regression analysis conducted on the silicate concentration, temperature, and salinity, the silicate concentration was increased in the less-saline subsurface water. The required amount of original freshwater was 108–9 m3 day?1 based on the excess nitrate concentration. This evidence indicates that the positive ExNOx water originated from large river waters such as the Changjiang. Thus, discharged water from the rivers of the East Asia is contributing to the increased N:P ratio in the Tsushima Warm Current, southern Japan Sea.  相似文献   
5.
A 3-D particle simulation of excitation of whistler waves driven by an electron temperature anisotropy (T > T ) is presented. Results show that whistler waves can have appreciable growth driven by the anisotropy. The maximum intensity of the excited whistler waves increases as a quadratic function of the anisotropy. Due to the presence of a threshold, one needs a relatively large electron temperature anisotropy above threshold to generate large-amplitude whistler waves. The average amplitude of turbulence in the context of whistler waves is up to as large as about 1% of the ambient magnetic field when T /T . The total energy density of the whistler turbulence is adequate for production of relativistic electrons in solar flares through stochastic acceleration.  相似文献   
6.
Abstract Illite crystallinity (IC) analyses in the Upper Cretaceous Shimanto accretionary complex of the southern Akaishi Mountains, eastern Southwest Japan confirm the applicability of this technique for evaluating the grade of diagenesis/metamorphism in a sediment-dominated accretionary complex. Reproducibility analyses of IC values show a variance of about 15% from the mean. Data from three traverses, which transect across-strike sections of ∼25 km, clearly demonstrate that the IC distributions have specific overall trends. The IC values belong to the lQwer anchizone and the zone of diagenesis. The IC distributions may be controlled locally by structural features, but there are no distinct relationships with regional-scale geological structures. This may indicate that the heterogeneous geothermal rise affected the pre-existing structural and diagenetic/metamorphic framework of the accretionary sequence. Along-strike variations of grade tend to increase toward the northeast where a Middle Miocene granitoid occurs. Hence, the original diagenetic/metamorphic framework of this part of the Shimanto Belt was presumably overprinted during the Middle Miocene.  相似文献   
7.
Fluorine contents in about 160 representative Quaternary volcanic rocks and 15 hornblende and biotite phenocrysts in a calc-alkali series in Japan have been determined by a selective ion-electrode method. Tholeiites have the lowest contents and the narrowest range (58–145 ppm), while alkali basalts have the highest contentws and the widest range (301–666 ppm), high-alumina basalts have intermediate values (188–292 ppm). F contents in basalts clearly increase from east to west across the Japanese Islands, as do alkalies, P2O5 REE, U, Th and H2O.The volcanic rocks studied are divided into two groups on the basis of F: (1) witt, increasing % SiO2 or advancing fractionation, F contents show either progressive enrichment; or (2) with increasing fractionation, F contents show rather constant values. The former is produced by fractionation of anhydrous phases from basalt to mafic andesite magmas; the tholeiite series of Nasu volcanic zone (outer zone), northeastern, Japan is a typical example. The latter group is derived through separation of amphibole-bearing phases from basaltic magmas at various depths from upper mantle (about 30 km) to upper crust; the alkali series in southwestern Japan and the calc-alkali series of Chokai volcanic zone (inner zone), northeastern Japan, are examples.  相似文献   
8.
A new general relativistic magnetohydrodynamics (GRMHD) code “RAISHIN” used to simulate jet generation by rotating and non-rotating black holes with a geometrically thin Keplarian accretion disk finds that the jet develops a spine-sheath structure in the rotating black hole case. Spine-sheath structure and strong magnetic fields significantly modify the Kelvin-Helmholtz (KH) velocity shear driven instability. The RAISHIN code has been used in its relativistic magnetohydrodynamic (RMHD) configuration to study the effects of strong magnetic fields and weakly relativistic sheath motion, c/2, on the KH instability associated with a relativistic, γ=2.5, jet spine-sheath interaction. In the simulations sound speeds up to and Alfvén wave speeds up to ∼0.56c are considered. Numerical simulation results are compared to theoretical predictions from a new normal mode analysis of the RMHD equations. Increased stability of a weakly magnetized system resulting from c/2 sheath speeds and stabilization of a strongly magnetized system resulting from c/2 sheath speeds is found.  相似文献   
9.
The seasonal variation in the structure and volume transport of the Tsushima Warm Current through the Tsushima Straits is studied using the acoustic Doppler current profiler (ADCP) data obtained by the ferryboat Camellia between Hakata, Japan and Pusan, Korea from February 1997 to February 2007. A robust estimation method to eliminate the effects of aliasing and tidal signals more accurately leads to a significant increase in the volume transport in winter time compared to the previously reported one by Takikawa et al. (2005) who analyzed this ADCP dataset for the first 5.5 years. The 10 years average of volume transport through the Tsushima Straits is 2.65 Sv, and those through the channels east (CE) and west (CW) of the Tsushima Islands are 1.20 Sv and 1.45 Sv, respectively, which represent a 13% increase and an 8% decrease from those of Takikawa et al. (2005). The transport through the CE increases rapidly from winter to spring and then decreases gradually as winter approaches. On the other hand, the transport through the CW increases gradually from winter to autumn and then decreases rapidly as winter approaches. The transport through the CE is larger than that of through the CW from February to April. The contribution of the Ekman transport near the sea surface, which is not measured with the ADCP, to the seasonal volume transport variation across our ADCP section is not significant.  相似文献   
10.
We present a model of solar flares triggered by collisions between current loops and plasmoids. We investigate a collision process between a force-free current loop and a plasmoid, by using 3-D resistive MHD code. It is shown that a current system can be induced in the front of a plasmoid, when it approaches a force-free current loop. This secondary current produced in the front of the plasmoid separates from the plasmoid and coalesces to the force-free current loop associated with the magnetic reconnection. The core of the plasmoid stays outside the reconnection region, maintaining high density. The core can be confined by the current system produced around the plasmoid. This collison process between a current loop and a plasmoid may explain the triggering of solar flares observed byYohkoh.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号