首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
地球物理   9篇
地质学   4篇
天文学   1篇
  2009年   2篇
  2007年   2篇
  2002年   1篇
  1999年   1篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1973年   1篇
  1969年   1篇
排序方式: 共有14条查询结果,搜索用时 31 毫秒
1.
Fluorine contents have been determined in about forty samples of amphibole, mica and apatite in alkali basalt and kimberlite and their incorporated xenoliths. They show a wide variation ranging from 15,000 to 100 ppm, corresponding to about 40 to 0.2 per cent substitution of F for OH in hydroxyl site of hydrous minerals. Fluorine abundances in these minerals reflect those of their host magmas or rocks; Itinome-gata xenoliths are the lowest and South African kimberlites and their xenoliths are the highest. F/OH and also. D/H (Kuroda et al. 1975) ratios in coexisting phlogopite-potassic richterite from peridotite and mica nodules are thoughts to have formed under no simple equlibrium conditions.  相似文献   
2.
3.
Alkylbenzenes, molecular markers of sewage, were measured in 34 green mussels collected from India, Indonesia, Malaysia, Thailand, Cambodia, Vietnam, and the Philippines together with blue mussels collected from Tokyo Bay, Japan. Linear alkylbenzene (LAB) concentrations in South and South East Asian countries ranged from 10 to 1640 ng-∑LAB/g-dry tissue. In some populous cities, LAB concentrations were similar or higher than those found in northern Tokyo Bay which is heavily impacted by sewage effluents. I/E ratios (a ratio of internal to external isomers of LABs) in the South and South East Asian countries (1–3) were much lower than those in Tokyo Bay (3–8), indicating sewage discharged in the coastal zone is poorly treated (e.g., raw sewage and/or primary effluents). Alkylbenzenes with branched alkyl chains, tetrapropylene-based alkylbenzenes, were also detected in mussels from Indonesia and Philippines. This “tell-tale” sign indicates that poorly degradable detergents are still in use in this area, although they have long been phased-out in many industrialized countries.  相似文献   
4.
Rare gas isotopes in a phlogopite nodule and a phlogopite-bearing peridotite nodule in South African kimberlites were studied to examine the state of rare gases in the deep interior of the kimberlite region.Within the experimental error of 1 ~ 2%, rare gas isotopic compositions are atmospheric except for radiogenic4He and40Ar. No excess129Xe was observed.In phlogopite, Ne is more depleted, whereas the heavier rare gases are more enriched than the atmospheric rare gases relative to36Ar.Together with other data these results suggest that the state of rare gases in the upper mantle of the South African kimberlite region might have been changed from the typical primitive mantle by a process such as mixing of crustal materials.  相似文献   
5.
Fluorine contents in about 160 representative Quaternary volcanic rocks and 15 hornblende and biotite phenocrysts in a calc-alkali series in Japan have been determined by a selective ion-electrode method. Tholeiites have the lowest contents and the narrowest range (58–145 ppm), while alkali basalts have the highest contentws and the widest range (301–666 ppm), high-alumina basalts have intermediate values (188–292 ppm). F contents in basalts clearly increase from east to west across the Japanese Islands, as do alkalies, P2O5 REE, U, Th and H2O.The volcanic rocks studied are divided into two groups on the basis of F: (1) witt, increasing % SiO2 or advancing fractionation, F contents show either progressive enrichment; or (2) with increasing fractionation, F contents show rather constant values. The former is produced by fractionation of anhydrous phases from basalt to mafic andesite magmas; the tholeiite series of Nasu volcanic zone (outer zone), northeastern, Japan is a typical example. The latter group is derived through separation of amphibole-bearing phases from basaltic magmas at various depths from upper mantle (about 30 km) to upper crust; the alkali series in southwestern Japan and the calc-alkali series of Chokai volcanic zone (inner zone), northeastern Japan, are examples.  相似文献   
6.
Clinopyroxene and orthopyroxene megacrysts containing garnet lamellae up to 1.2 mm thick as an exsolved phase are found rarely in kimberlites from Frank Smith and Bellsbank. Chemically the clinopyroxenes are characteristically subcalcic, being within the range of 100 Ca/Ca + Mg + Fe = 27 to 36, and the orthopyroxenes are characterized by high Al2O3 and Cr2O3. Immediately after crystallization during very slow cooling, clinopyroxene and orthopyroxene exsolve wide-spaced orthopyroxene and clinopyroxene phases parallel to (100) of the host phases, respectively, then both host and exsolved phases exsolve garnet lamellae. Topotactic relations between pyroxenes and garnet are determined by X-ray for the first time. Partitioning of major and minor elements among the coexisting clinopyroxene, orthopyroxene and garnet in pyroxene megacrysts is the same as that of the granular-type garnet peridotite xenoliths in Lesotho and South African kimberlies. Mineralogy and chemistry indicate that subcalcic clinopyroxene and orthopyroxene megacrysts contain respectively about 10 and 3 mole % of the garnet molecule in solid solution.  相似文献   
7.
The lherzolites have recrystallized to plagioclase lherzolites consisting of olvine, pyroxenes, chromian spinel, plagioclase and pargasite at a depth of 20 to 25 km in the uppermost part of the mantle. It is believed that the garnet lherzolites and spinel lherzolites were originally derived from depths of 50–75 km and 30–50 km respectively. The clinopyroxenes contained about 10 mol. % of jadeite and Tschermak's molecules, respectively and the orthopyroxenes also included about 5–10% of Tschermak's component. Transported upward, the garnet was transformed through pyroxene-spinel symplectite to olivine, plagioclase and spinel aggregates, and most of the jadeite amd some Tschermak's components in the pyroxenes formed secondary pyroxenes and pargasite, and finally plagioclase under isochemical conditions.  相似文献   
8.
The Bilimoia deposit (2.23 Mt, 24 g/t Au), located in the eastern Central Mobile Belt of mainland Papua New Guinea, is composed of fault‐hosted, NW–NNW‐trending Irumafimpa–Kora and Judd–Upper Kora Au‐quartz veins hosted by Middle–Late Triassic basement that was metamorphosed to medium‐grade greenschist facies between Middle–Late Triassic and Early–Middle Jurassic. Mineralizing fluids were introduced during crustal thickening, rapid uplift, change of plate motions from oblique to orthogonal compression, active faulting and S3 and S4 events in an S1–S4 deformation sequence. The Bilimoia deposit is spatially and temporally related to I‐type, early intermediate to felsic and late mafic intrusions emplaced in Late Miocene (9–7 Ma). Hydrothermal alteration and associated mineralization is divided into 10 main paragenetic stages: (1) chlorite–epidote‐selvaged quartz–calcite–specularite vein; (2) local quartz–illite–pyrite alteration; (3) quartz–sericite–mariposite–fuchsite–pyrite wall‐rock alteration that delimits the bounding shears; (4) finely banded, colloform‐, crustiform‐ and cockade‐textured and drusy quartz ± early wolframite ± late adularia; (5) hematite; (6) pyrite; (7) quartz ± amethyst‐base metal sulfides; (8) quartz–chalcopyrite–bornite–Sn and Cu sulfides–Au tellurides and Te ± Bi ± Ag ± Cu ± Pb phases; (9) Fe ± Mn carbonates; and (10) supergene overprint. Fluid inclusions in stage 4 are characterized by low salinity (0.9–5.4 wt% NaCl equivalent), aqueous–carbonic fluids with total homogenization temperatures ranging from 210 to 330°C. Some of the inclusions that homogenized between 285 and 330°C host coexisting liquid‐ and vapor‐rich (including carbonic) phases, suggesting phase separation. Fluid inclusions in quartz intergrown with wolframite have low salinity (0.9–1.2 wt% NaCl equivalent), aqueous–carbonic fluids at 240–260°C, defining the latter’s depositional conditions. The ore fluids were derived from oxidized magmatic source initially contaminated by reduced basement rocks. Wall‐rock alteration and involvement of circulating meteoric waters were dominant during the first three stages and early part of stage 4. Stage 5 hematite was deposited as a result of stage 4 phase separation or entrainment of oxygenated groundwater. Gold is associated with Te‐ and Bi‐bearing minerals and mostly precipitated as gold‐tellurides during stage 8. Gold deposition occurred below 350°C due to a change in the sulfidation and oxidation state of the fluids, depressurization and decreasing temperature and activities of sulfur and tellurium. Bisulfides are considered to be the main Au‐transporting complexes. The Bilimoia deposit has affinities that are similar to many gold systems termed epizonal orogenic and intrusion‐related. The current data allow us to classify the Bilimoia deposit as a fault‐controlled, metamorphic‐hosted, intrusion‐related mesothermal to low sulfidation epithermal quartz–Au–Te–Bi vein system.  相似文献   
9.
Solar hard X-ray bursts (>10 keV) seem to show a centre-to-limb variation, while softer X-ray bursts show no directivity. This effect of hard X-ray bursts may be due to the directivity of the emission itself. As the cause of the directivity, two possibilities are suggested. One is the inverse Compton effect and the other is the bremsstrahlung from anisotropic electrons.  相似文献   
10.
Hidetoshi  Hara  Ken-Ichiro  Hisada 《Island Arc》2007,16(1):57-68
Abstract   Micro-thermometry of water-rich fluid inclusions from two syn-tectonic veins sets ( D1 and D2 veins) in the Otaki Group, part of the Cretaceous Shimanto accretionary complex of the Kanto Mountains, central Japan reveals the following tectono-metamorphic evolution. Combining the results of microthermometric analyses of fluid inclusions from D1 veins with an assumed geothermal gradient of 20–50°C/km indicates that the temperature and fluid pressure conditions during D1 were 270–300°C and 140–190 MPa, respectively. Peak metamorphic conditions during the development of D2 slaty cleavage involved temperatures in excess of 300°C and fluid pressures greater than 270 MPa, based on analyses of microthermometry of water-rich fluid inclusions from the D2 vein and illite crystallinity. The estimated fluid pressure increased by approximately 80 MPa from D1 accretionary processes to metamorphism and slaty cleavage development during D2 . Assuming that fluid pressure reached lithostatic pressure, the observed increase in fluid pressure can be accounted for by thrusting of the Jurassic Chichibu accretionary complex over the Cretaceous Shimanto accretionary complex. Following thrusting, both accretionary complexes were subjected to metamorphism during the latest Cretaceous.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号