首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   7篇
测绘学   5篇
大气科学   4篇
地球物理   19篇
地质学   27篇
海洋学   6篇
天文学   31篇
自然地理   3篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   4篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   5篇
  2010年   2篇
  2009年   9篇
  2008年   6篇
  2007年   6篇
  2006年   4篇
  2005年   7篇
  2004年   6篇
  2003年   4篇
  2002年   6篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1973年   1篇
排序方式: 共有95条查询结果,搜索用时 437 毫秒
1.
2.
This paper presents a statistical analysis of the algebraic strain estimation algorithm of Shimamoto and Ikeda [Shimamoto, T., Ikeda, Y., 1976. A simple algebraic method for strain estimation from deformed eillipsoidal objects: 1. Basic theory. Tectonophysics 36, 315–337]. It is argued that the error in their strain estimation procedure can be quantified using an expected discrepancy measure. An analysis of this measure demonstrates that the error is inversely proportional to the number of clasts used. The paper also examines the role of measurement error, in particular that incurred under (i) a moment based and (ii) manual data acquisition methods. Detailed analysis of these two acquisition methods shows that in both cases, the effect of measurement error on the expected discrepancy is small relative to the effect of the sample size (number of objects). Given their relative speed advantage, this result favours the use of automated measurement methods even if they incur more measurement error on individual objects. Validation of these results is carried out by means of a simulation study, as well as by reference to studies appearing in previous literature. The results are also applied to obtain an upper bound on the error of strain estimation for various studies published in the literature on strain analysis.  相似文献   
3.
4.
Basin landscapes possess an identifiable spatial structure, fashioned by climate, geology and land use, that affects their hydrologic response. This structure defines a basin's hydrogeological signature and corresponding patterns of runoff and stream chemistry. Interpreting this signature expresses a fundamental understanding of basin hydrology in terms of the dominant hydrologic components: surface, interflow and groundwater runoff. Using spatial analysis techniques, spatially distributed watershed characteristics and measurements of rainfall and runoff, we present an approach for modelling basin hydrology that integrates hydrogeological interpretation and hydrologic response unit concepts, applicable to both new and existing rainfall‐runoff models. The benefits of our modelling approach are a clearly defined distribution of dominant runoff form and behaviour, which is useful for interpreting functions of runoff in the recruitment and transport of sediment and other contaminants, and limited over‐parameterization. Our methods are illustrated in a case study focused on four watersheds (24 to 50 km2) draining the southern coast of California for the period October 1988 though to September 2002. Based on our hydrogeological interpretation, we present a new rainfall‐runoff model developed to simulate both surface and subsurface runoff, where surface runoff is from either urban or rural surfaces and subsurface runoff is either interflow from steep shallow soils or groundwater from bedrock and coarse‐textured fan deposits. Our assertions and model results are supported using streamflow data from seven US Geological Survey stream gauges and measured stream silica concentrations from two Santa Barbara Channel–Long Term Ecological Research Project sampling sites. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
5.
The potential for gravel extraction to adversely affect anadromous fish habitat in three gravel-bed rivers of southwestern Washington, U.S.A., prompted the need to determine sustainable rates of gravel removal. This was accomplished by evaluating the components of a long-term sediment mass balance for the three rivers. Average annual gravel transport was determined by three independent methods. The closely agreeing results indicate that annual bedload supply decreases downstream through deposition and storage in response to declining gradient and from attrition during transport, as confirmed by laboratory experiments. A survey of gravel-bar harvesting operations indicates that the annual replenishment rate has been exceeded for up to three decades, often by more than tenfold. Analysis of data from nine stream gauging stations over a 55-yr period indicates degradation of about 0.03 m/yr in these reaches and suggests that bed degradation has produced the difference between the replenishment rates and the volumes of gravel harvested from the river beds and bars.  相似文献   
6.
 This paper presents and demonstrates a general approach to solving spatial dynamic models in continuous space and continuous time that characterize the behaviour of intertemporally and interspatially optimizing agents and estimating from discrete data the parameters of such models. The approach involves the use of a projection method to solve the models and a quasi-Newton algorithm to update quasi-FIML parameter estimates. Received: 26 July 2000 / Accepted: 31 January 2001  相似文献   
7.
In order to achieve some consistency in the establishment of groundwater intrinsic vulnerability maps in Europe, a new approach is proposed by Working Group 1 of the European COST Action 620 on "Vulnerability mapping for the protection of carbonate (karst) aquifers". A general procedure is offered which provides consistency while allowing the required flexibility for application to a continent and under conditions of varying geology, scale, information availability, time, and resources. The proposed methodology is designed to be clearly more physically based than the existing vulnerability-mapping techniques. It takes the specificity of the karstic environments into account without necessarily excluding the applicability to other geological conditions. Combined "core factors" for overlying layers and for concentration of flow account for the relative protection of groundwater from contamination while taking into account any bypass of the overlying layers. A precipitation factor is distinguished for describing characteristics of the input of water to the system. Differentiation is made between groundwater resource intrinsic vulnerability mapping and source intrinsic vulnerability mapping. For the latter, a factor describing the karst network development is relevant. This short technical note describes a first step in the work program of Working Group 1 of the COST Action 620. Future steps are now in progress to quantify the approach and to apply it in various European pilot areas. Electronic Publication  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号