首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   3篇
地球物理   15篇
地质学   11篇
海洋学   5篇
天文学   1篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2011年   2篇
  2009年   6篇
  2008年   1篇
  2007年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2000年   2篇
  1998年   2篇
  1987年   1篇
  1984年   1篇
  1980年   1篇
  1978年   1篇
  1973年   1篇
排序方式: 共有32条查询结果,搜索用时 31 毫秒
1.
Interface waves such as the Scholte wave are a useful tool to study geoacoustic properties and can be conventionally generated by an explosive or a pneumatic source on/above the seafloor. This type of source, however, generates strong compressional waves in the water and sediment at the same time; these waves then disturb an observation of interface waves and leads to difficulty in processing. These sources are also relatively hard to control at sea from a viewpoint of repeatability and stability of interface waves to be generated. In addition, environmental problems caused by those sources is a concern. In this paper, an electromagnetic induction source whose vibrator plate hits the seafloor directly and excites interface waves is described. The capability of this source was evaluated both in a water tank and at seashore. The pulsed Scholte waves excited both by several types of electromagnetic induction source having a different shape of vibrator plate and by dropping weight were transmitted in sediment and received using geophones. As a result of comparison of measured signals, the pulse signal propagating from the source demonstrates a sharper rise time than that from dropping weight  相似文献   
2.
The displacement of a relatively small reactivated landslide in a snowy area in Japan was monitored over a long period. The displacement rate of the landslide, which was approximately of 20 mm d?1 before the formation of snow cover, decelerated drastically during the continuous snow cover period every winter period. Possible causes included reduction in the amount of water that reached the ground surface (MR: meltwater and/or rainwater) and increase in snow load. Given that the actual displacement of the landslide was far below the predicted value based on the relationship between landslide displacement and MR immediately before the continuous snow cover period, the deceleration of landslide displacement was more likely attributable to the increase in snow load than to the reduction in MR. An investigation of the link between snow load and landslide displacement showed a negative logarithmic relationship. A dynamic analysis based on the limit equilibrium method showed that snow load increases the effective normal stress and the stability of a landslide in which the mean inclination angle of the slip surface is smaller than the internal friction angle. The stability of the actual slope was also analyzed by conducting soil tests on samples collected at the site and using the resultant parameters. The analysis also showed that the increase in snow load increases the safety factor and reduces the landslide displacement. The displacement of a relatively small landslide that has a shallow slip surface was found to be greatly influenced by snow cover.  相似文献   
3.
Continuous observations of sprites in the Hokuriku area of Japan were performed from two optical sites during the three winter periods. The purpose of this observation is to study the major effect in the appearance of sprites and in determining the morphology of sprites (columns or carrots). Detailed analysis is performed based on the estimation of the height of ?10 °C at the time of sprite occurrence. When the height of ?10 °C is lower than 1800 m, the occurrence of sprites is infrequent, and the dominant shape is column. Then when it is increased (1800–3000 m), a new situation takes place, namely the occurrence of sprites is very enhanced and more spectacular shapes like carrots tend to be frequently observed in addition to column sprites. These sprite characteristics are first compared with those of parent lightning in the Hokuriku area and with our latest computer simulations on sprite initiation.  相似文献   
4.
The purpose of this paper is to study the three-dimensional (3D) effects of the source current and the electromagnetic (EM) pulse on the distribution of upper atmospheric electric field and ionization created. A new lightning model has been employed; i.e., we have included a horizontal channel in addition to the conventional vertical channel. The effects of the horizontal lightning channel are summarized as follows: (1) the effect of a vertical channel plays a fundamental role in the whole view of sprite initiation; (2) the position of a sprite is shifted from the position of its parent vertical channel in response to the length of a horizontal channel; and (3) we observe very fine structures with local maxima and minima in the “reduced” electric field (the electric field divided by the neutral gas density). These theoretical inferences are discussed and compared with the observational facts so far reported (such as lateral shift of sprites, morphological difference of sprites, etc.).  相似文献   
5.
It is fact that the severe ground motions of shear waves have a strong effect on the dynamic behavior of buildings and civil structures. We simulate near source strong motions of a pure shear wave and synthesize small motions, using the parameters based on the recorded accelerograms at the site that is regarded as a base rock in the Osaka basin, Japan. By making use of a stochastic technique, we can easily introduce higher frequency contents in the motions and apply the technique to the synthesis of small waves regarding as a green function. We also introduce to the analysis the useful relationships among the time duration Td, the seismic moment M0, the corner frequency fc and the high cutoff frequency fmax which were regressed by a simple representation scheme. Considering two active faults that may affect severe damage on buildings and civil structures, we try to predict strong ground motions in Osaka basin and show the characteristics of them.  相似文献   
6.
The mode of incorporation of sulfate ion in travertine was discussed on the basis of chemical compositions, i.r. and laser Raman spectra. These data strongly suggest that most of the sulfate ions in the calcitic travertine replace carbonate ions. This conclusion is in good harmony with the facts that calcite incorporates more sulfate ions than aragonite does and that the sulfate content of manganoan calcite decreases with increasing manganese content (Takano et al. 1977). Based on this conclusion, retarding effect of sulfate ion on the precipitation of calcite from solution was discussed.  相似文献   
7.
The P-wave velocity structure of the upper crust beneath a profile ranging from Niikappu to Samani in the southwestern foot of the Hidaka Mountains, Hokkaido, Japan was obtained through analysis of refraction and wide-angle reflection data. The mountains are characterized by high seismicity and a large gravity anomaly. The present profile crosses the source region of the 1982 Urakawa-oki earthquake (Ms 6.8). The length of the profile is 66 km striking northwest and southeast. Along the profile, 64 vertical geophones were set up and 5 shot points were chosen. For each shot, a 400–600 kg charge of dynamite was detonated. The studied area is composed of four major geological belts: Neogene sedimentary rocks, the Kamuikotan belt, the Yezo Group, and the Hidaka belt. The measurement line crosses these geological trend at an oblique angle. The structure obtained is characterized by remarkable velocity variations in the lateral direction and reflects the surface geological characteristics. A thin, high-velocity layer (HVL) was found between low-velocity materials in the central part of the profile, beneath the Kamuikotan Metamorphic Belt, at a depth ranging from 0.5 to 6 km, overthrusting toward the west on the low-velocity materials consisting of Neogene sedimentary rocks, and forming gentle folds. Outlines of the velocity structure of the Hidaka Mountains yielded by other studies have shown a large-scale overthrust structure associated with the collision of the Outer Kurile and the Outer Northern Honshu Arcs. The shallow velocity structure inferred by the present study showed a similar (although small scale) overthrust structure. The obtained structure shows that the composite tectonic force, comprising westward movement of the Outer Kurile Arc and northward movement of the Outer Northern Honshu Arc, plays an important role in the evolution of the tectonic features of the crust and upper mantle in a wide depth range beneath the Hidaka Mountains.  相似文献   
8.
9.
Dense strong motion observation networks provided us with valuable data for studying strong motion generation from large earthquakes. From kinematic waveform inversion of seismic data, the slip distribution on the fault surface of large earthquakes is known to be spatially heterogeneous. Because heterogeneities in the slip and stress drop distributions control the generation of near-source ground motion, it is important to characterize these heterogeneities for past earthquakes in constructing a source model for reliable prediction of strong ground motion. The stress changes during large earthquakes on the faults recently occurring in Japan are estimated from the detailed slip models obtained by the kinematic waveform inversion. The stress drops on and off asperities are summarized on the basis of the stress change distributions obtained here. In this paper, we define the asperity to be a rectangular area whose slip is 1.5 or more times larger than the average slip over the fault according to the previous study for inland crustal earthquakes. The average static stress drops on the asperities of the earthquakes studied here are in the range 6?C23?MPa, whereas those off the asperities are below 3?MPa. We compiled the stress drop on the asperities together with a data set from previous studies of other inland earthquakes in Japan and elsewhere. The static stress drop on the asperity depends on its depth, and we obtained an empirical relationship between the static stress drop and the asperity??s depth. Moreover, surface-breaking asperities seemed to have smaller stress drops than buried asperities. Simple ground motion simulations using the characterized asperity source models reveal that deep asperities generate larger ground motion than shallow asperities, because of the different stress drops of the asperities. These characteristics can be used for advanced source modeling in strong ground motion prediction for inland crustal earthquakes.  相似文献   
10.
A seasonal scale field observation extending over a period of 82?days was conducted in Urauchi Bay on Kami-Koshiki Island, to record meteotsunami events, disastrous secondary oscillations locally known as ??abiki.?? The bay has an elongated T-shape topography with a narrow mouth opening westward to the East China Sea. The area has suffered the effects of meteotsunami causing flooding in residential area and damage to fishing fleets and facilities. A comprehensive observation system for sea level, ocean currents and barometric pressure was deployed to cover the regions within and offshore from Urauchi Bay and the open sea near the island of Mejima in the East China Sea. Vigorous meteotsunami events, where the total height exceeded 150?cm, were observed over five-day periods during the observation period. One or two hours prior to the arrival of meteotsunami events at Kami-Koshiki Island, abrupt 1?C2?hPa pressure changes were observed at the Mejima observation site. Pressure disturbances were found to travel eastward or northeastward. The propagation speed was found to nearly coincide with that of ocean long waves over the East China Sea, and as a result, resonant coupling should be anticipated. The incoming long waves were also amplified by geometric resonance with eigen oscillations inherent in the T-shape topography of Urauchi Bay.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号