首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
地球物理   6篇
地质学   2篇
  2021年   3篇
  2018年   1篇
  2013年   1篇
  2009年   1篇
  2006年   1篇
  2003年   1篇
排序方式: 共有8条查询结果,搜索用时 830 毫秒
1
1.
Spatial and temporal variations of the isotopic composition of precipitation over Thailand were investigated. The local meteoric water line for Thailand deviates slightly from the global meteoric water line, with lower slopes (7.62 ± 0.07, 7.59 ± 0.08) and intercepts (6.42 ± 0.39, 6.22 ± 0.42) using ordinary and precipitation weighted methods. Differences in spatial and temporal δ18O distributions between the tropical monsoon and tropical savanna climate zones were found due to differing moisture source contributions and seasonal precipitation patterns. The temporal data reveals that the northeast monsoon rains originate from isotopically-enriched local moisture with isotope values of −9.36 to −0.09‰ (mean − 3.73 ± 0.42‰), whereas the southwest monsoon clouds had a more significant rainout effect from Rayleigh distillation, with isotope values of −9.56 to −1.78‰ (mean − 5.40 ± 0.38‰). The precipitation amount at each site was negatively correlated with δ18O (−0.24 to −3.20‰ per 100 mm, R2 = 0.1–0.9). Furthermore, δ18O was negatively correlated with geography (latitude, altitude) for the southwest monsoon periods, as expected based on other observed correlations. However, an inverse correlation was seen in the northeast monsoon due to differing moisture transportation as part of the continental effect. The correlation coefficient (R) was higher in the southwest monsoon (−0.84 for latitude effect, −0.64 for altitude effect) than the northeast monsoon (0.67 for latitude effect, 0.35 for altitude effect). The spatial pattern of isotopic composition reflects the southwest monsoon more clearly than the northeast monsoon, but the two monsoons also have a cancelling impact on orographic patterns. An agreement of the δ18O and deuterium excess (d-excess) was a negative correlation and found to reflect precipitation sources and re-evaporation processes. The d-excess was slightly higher for the northeast monsoon, bringing moisture from the Pacific Ocean and travelling across the continent before reaching the observed stations. By contrast, the d-excess was relatively lower for the Indian Ocean's moisture in the southwest monsoon.  相似文献   
2.
This study examined the weekly water vapour isotopic composition (δ18Ov) in Thailand. The water vapour was cryogenically collected from eight sites across the country. Two observational samples were collected over one 24-h period each week (a daytime and a night-time sample), from September 2013 to September 2014. The primary aim was to investigate the environmental factors influencing water vapour isotopes. The results revealed differences in water vapour isotopic values between day and night samples. Three periods of depleted δ18Ov were associated with large-scale convective systems in September, December, and May. The statistical relationship between the climate variables and water vapour isotopes indicated that the amount of precipitation and relative humidity were the primary controls on both diurnal and seasonal isotopic variability. The temperature did not affect the δ18Ov, mainly because the atmospheric processes are a function of vertical convection rather than temperature in tropical regions. The water vapour deuterium excess (d-excess) showed greater variability in 2013 than in 2014. The d-excess variation reflected the differences in convection occurring in the day and night. In addition, the vapour phase data were combined with the local meteoric water line to identify the local water vapour line and the interaction between the isotopic composition of water vapour and liquid water. The water vapour isotopic patterns paralleled the precipitation isotopes on rainy days because of equilibrium isotopic exchange. Water vapour and precipitation were isotopically similar under low humidity but showed greater differences from each other under wetter conditions. The study results provide insight into water vapour isotopic characteristics in tropical regions and constrain the role of large-scale atmospheric processes relative to isotopic variability of water vapour in Thailand and nearby countries.  相似文献   
3.
Japan Marine Science and Technology Center installed a cabled geophysical observatory system off Kushiro, Hokkaido Island in July 1999. This observatory system comprises three ocean bottom seismographs (OBSs), two tsunami gauges, and a geophysical/geochemical monitoring system. 4 years and 2 months after the installation, a megathrust earthquake (the 2003 Tokachi-Oki earthquake, 26th September in Japan Standard Time (JST), MJMA 8.0) occurred along a plate boundary underneath a forearc basin where the system is located. The system recorded clear unsaturated seismograms just at 28.6 km from the epicenter. This paper demonstrates advantages brought by the cabled observatory to record the megathrust earthquake showing how earthquake detectability is improved dramatically combining permanent OBS and land-based observations around the region, and importance of the in situ monitoring on the seismogenic zone. In the present study, processing OBSs and land-based network together, and comparing magnitudes of common observed earthquakes with national authorized network, event detection level improved down to M 1.5, which is much lower than the previously designed as down to  2. Comparing detection level before and after installing OBSs, we found dramatic improvement of the earthquake detection level in the interesting region. Real-time continuous observations of microearthquakes since 1999 have brought us tremendous findings. First, a seismic quiescence started about 10 days before the 2003 Tokachi-Oki earthquake. Second, aftershock distribution is not uniform over the focal area and can be divided into several sub-regions, which might indicate an existence of several asperities. We think that the geophysical observations helped to understand the initiation process of the rupture of the 2003 Tokachi-Oki earthquake and that observations including seismological, geodynamic, hydrogeological, and the other multidisciplinary observations would provide a clue to future understanding of seismogenic processes at subduction zones.  相似文献   
4.
General circulation models (GCMs) fitted with stable isotope schemes are widely used to interpret the isotope–climate relationship. However, previous studies have found that the spatiotemporal isotope/precipitation correlation simulated by GCMs is stronger and more widespread than the observed value. To understand the reason for this failure, we investigated the factors influencing the empirically well-known isotope/precipitation relationship, or precipitation amount effect, in the tropics using newly obtained daily precipitation isotope monitoring data over Asia. As in previous studies, we found an apparent correlation between the long-term monthly mean isotopic content and the corresponding precipitation amount (local precipitation) observed at sub-tropical island stations. Furthermore, on a monthly timescale, the isotopic variability of precipitation for these stations was more clearly related to the regional precipitation amount than to local precipitation. This correlation of isotopic content with the regional precipitation amount was observed at the equatorial (Maritime Continent) stations. For these stations, isotope/local precipitation relationships only appeared over longer timescales, with different regression line slopes at each station. However, at the coastal stations, there was a strong linear relationship between the monthly mean isotopic content and corresponding regional precipitation, and regression line slopes were spatially uniform. For the two sub-tropical terrestrial (Indochina Peninsula) stations, the isotopic minimum appeared without any relationship to rainfall amount but usually occurred at the leeward station during the rainy season. These results suggest that the isotopic variations of precipitation did not depend on the ’local’ rain-out history but on the rain-out process in the surrounding region. However, local rainfall events were associated not only with large-scale disturbances but also with regional circulation. Thus, the scale difference of controlling factors between local rainfall amount and isotopic value results in the weakening of the rainfall amount effect at the observation site and in the discrepancy between GCM simulations and observations. This finding suggests that regional precipitation–isotope relationships should be compared with GCM results. Additionally, because the isotope signal reflects the rain-out history at a regional scale, evaluation of the isotopic field using isotopic GCMs will be useful not only to reconstruct paleoclimate conditions but also to examine how GCMs can reproduce real atmospheric circulation over the tropics.  相似文献   
5.
Soil moisture and its isotopic composition were observed at Spasskaya Pad experimental forest near Yakutsk, Russia, during summer in 1998, 1999, and 2000. The amount of soil water (plus ice) was estimated from volumetric soil water content obtained with time domain reflectometry. Soil moisture and its δ18O showed large interannual variation depending on the amount of summer rainfall. The soil water δ18O decreased with soil moisture during a dry summer (1998), indicating that ice meltwater from a deeper soil layer was transported upward. On the other hand, during a wet summer (1999), the δ18O of soil water increased due to percolation of summer rain with high δ18O values. Infiltration after spring snowmelt can be traced down to 15 cm by the increase in the amount of soil water and decrease in the δ18O because of the low δ18O of deposited snow. About half of the snow water equivalent (about 50 mm) recharged the surface soil. The pulse of the snow meltwater was, however, less important than the amount of summer rainfall for intra‐annual variation of soil moisture. Excess water at the time just before soil freezing, which is controlled by the amount of summer rainfall, was stored as ice during winter. This water storage stabilizes the rate of evapotranspiration. Soil water stored in the upper part of the active layer (surface to about 120 cm) can be a water source for transpiration in the following summer. On the other hand, once water was stored in the lower part of the active layer (deeper than about 120 cm), it would not be used by plants in the following summer, because the lower part of the active layer thaws in late summer after the plant growing season is over. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
6.
An earthquake with the moment magnitude M w ?=?5.8 occurred in the middle part of the Sakhalin Island, Russian Federation, on 14 August 2016, at 11:17 a.m. UTC. The earthquake source was located west of the Central Sakhalin Fault Zone, which is considered to mark the boundary between the Okhotsk and Eurasian (Amurian) plates. Moment tensor solution of the mainshock as well as the configuration of aftershock cloud suggests that the earthquake was caused by slip on a SW-dipping reverse fault. For the first time for Sakhalin, we have got the felt reports unified in accordance with DYFI. We also analyzed observed PGA values and, based on them, produced shaking maps.  相似文献   
7.
Stable isotopic compositions (δ18O and d-excess) from 25 rivers in Thailand were analysed monthly during 2013–2015. Results indicated that monsoon precipitation fundamentally influences the river isotopes. The overland flow supplied from monsoon precipitation and human-altered flow regimes produces considerable isotopic variability. Spatial and temporal variations were observed among four principal geographical regions. The seasonality of monsoon precipitation in mountainous Thailand produced large variations in isotopic compositions because most rainfall occurred during the southwest monsoon, and dry conditions prevailed during the northeast monsoon. The northern and northeastern regions are mountainous, highland areas. Low δ18O values were found in these regions, likely because of altitude effects on precipitation. Conversely, monsoonal precipitation continually supplies rivers in southern Thailand all year round, producing higher and more consistent δ18O values than in the other regions. The Chao Phraya plain in the central region experienced enrichment of δ18O river runoff related to evaporation in irrigation systems. Larger catchment areas and longer residence times resulted in more pronounced evaporation effects, producing lower values of d-excess and local river water line slopes compared with precipitation. The isotopic differences between river waters and precipitation were utilized to determine river recharge elevations and water transit time. The methods presented here can be used to explore hydrological interactions in other tropical river basins.  相似文献   
8.
To estimate the spatial distribution of groundwater discharge from the bottom of a small lake of Kumamoto in Japan, we applied continuous radon measurements with a dual loop system and verified the results obtained using the radon method by visual diving surveys. Time‐shifting correction in the dual‐loop system is reasonable to obtain the true radon activity in water. Distributions of radon activity and water temperature in the study area reveal the effects on groundwater discharge and mixing situation of lake water. The estimated discharge zone ascertained using the radon method agrees with the groundwater discharge distribution observed through diving surveys. Although the data resolution of the radon method is much greater than the width of observed discharge zones, the general distribution of groundwater discharge is recognizable. The dual loop system of radon measurement is useful for smaller areas.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号