首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
地球物理   2篇
地质学   2篇
综合类   2篇
  2020年   1篇
  2018年   3篇
  2016年   2篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
The present paper aims at modeling suspended sediment load (SSL) using heuristic data driven methodologies, e.g. Gene Expression Programming (GEP) and Support Vector Machine (SVM) in three successive hydrometric stations of Housatonic River in U.S. The simulations were carried out through local and cross-station data management scenarios to investigate the interrelations between the SSL values of upstream/downstream stations. The available scenarios were applied to predict SSL values using GEP to obtain the best models. Then, the best models were predicted by SVM approach and the obtained results were compared with those of GEP. The comparison of the results revealed that the SVM technique is more capable than the GEP for modeling the SSL through the both local and cross-station data management strategies. Besides, local application seems to be better than cross-station application for modeling SSL. Nevertheless, the cross-station application demonstrated to be a valid methodology for simulating SSL, which would be of interest for the stations with lack of observational data. Also, the prediction capability of conventional Sediment Rating Curve (SRC) method was compared with those of GEP and SVM techniques. The obtained results revealed the superiority of GEP and SVM-based models over the traditional SRC technique in the studied stations.  相似文献   
2.
Natural Hazards - Organization of volunteer personnel and proper management of these enormous and valuable human resources to make that most of their scientific, experiential, physical, and...  相似文献   
3.
The hydrologic process and dynamic system of precipitation is influenced by many physical factors which are excessively complex and variable. Present study used a wavelet transform based multiscale entropy (WME) and wavelet-based multiscale relative entropy (WMRE) approach in order to analyze and gage the complexity of the precipitation series and spatially classify the raingauges in Iran. For this end, historical annual precipitation data of 51 years (1960–2010) from 31 raingauges was decomposed using WT in which smooth Daubechies (db) mother wavelet (db5–db10), optimal level of decomposition and boundary extensions were considered. Next, entropy concept was applied for components obtained from WT to measure of dispersion, uncertainty, disorderliness and diversification in a multi-scale form. Spatial classification of raingauges was performed using WME and WMRE values as input data to SOM and k-means approaches. Three validity indices namely Davis Bouldin (DB), Silhouette coefficient (SC) and Dunn index were used to validate the proposed model’s efficiency. Based on results, it was observed that k-means approach had better performance in determining homogenous areas with SC = 0.337, DB = 0.769 and Dunn = 1.42. Finally, spatial structure of precipitation variation in latitude and longitude directions demonstrated that WME and WMRE values had a decreasing trend with latitude, however, it was seen that WME and WMRE had an increasing relationship with longitude in Iran.  相似文献   
4.
In modeling of overland flow and erosion, the overland flow friction factor (f), is a crucial factor. Due to the importance of a good understanding of f and its variability, the current study aimed to investigate the capability of non-linear approaches to estimate the Darcy-Weisbach friction factor of overland flow and its components (sediment transport, wave, form, and grain friction factors) through the Extreme Learning Machine (ELM) approach. Four datasets were used herein which were obtained from flume experiments done by different researchers. In order to investigate the effects of different parameters on the friction factor, numerous models consisting of various parameters were utilized to predict the friction factor using the ELM approach. The modeling procedure was established in two stages; the first stage aimed to model the overland flow friction factor and investigate the effect of the different parameters on the friction factor using non-linear separation via the ELM approach. In the second stage, the friction factor was linearly separated into different types of friction factors and then the separate components were estimated. Sensitivity analysis results confirmed the key role of Froude number (Fr) values for most of the models. On the other hand, the results obtained for estimated values of the friction factor were acceptable and outperformed available empirical approaches.  相似文献   
5.
Determination of homogenous precipitation-based regions is a very important task in effective management of water resources. The present study tried to propose an effective precipitation-based regionalization methodology by conjugating both temporal pre-processing and spatial clustering approaches in a way to take advantage of multiscale properties of precipitation time series. Annual precipitation data of 51 years (1960-2010) for 31 rain gauges (RGs) were collected and used in proposed clustering approaches. Discreet wavelet transform (DWT) was used to capture the time-frequency attributes of the time series and multiscale regionalization was performed by using k-means and Self Organizing Maps (SOM) clustering techniques. Daubechies function (db) was selected as mother wavelet to decompose the precipitation time series. Also, proper boundary extensions and decomposition level were applied. Different combinations of the approximation (A) and detail (D) coefficients were used to determine the input dataset as a basis of spatial clustering. The proposed model’s efficiency in spatial clustering stage was verified using three different indexes namely, Silhouette Coefficient (SC), Dunn index and Davis Bouldin index (DB). Results approved superior performance of k-means technique in comparison to SOM. It was also deduced that DWT-based regionalization methodology showed improvements in comparison to historical-based models. Cross mutual information was used to investigate the RGs of cluster 3’s homogeneousness in DWT-k-means approach. Results of non-linear correlation approach verified homogeneity of cluster 3. Verifications based on mean annual precipitation values of rain gauges in each cluster also approved the capability of multiscale approach in precipitation regionalization.  相似文献   
6.
Because of their sensitive structure, earth dams might face failure due to seepage phenomenon. In order to prevent such failure, some equipment like piezometers are installed in the body or foundation of earth dams. This study investigated the importance of piezometer installation level in dam body or foundation using mutual information–wavelet–Gaussian process regression. 27 Piezometers in three section along with reservoir level were employed to predict one-step-ahead seepage discharge of Zonouz earth dam. The daily data of 1 year of piezometer level and reservoir level were collected for this purpose. In order to find the best possible input combination, three groups of modeling scenarios were defined using piezometers and reservoir level time series. As some input combinations had more than two variables, decomposed time series were imposed into mutual information (MI) tool in order to decrement input variables and find the most correlated input–output features. Afterward, mentioned features were imposed into optimized Gaussian process regression (GPR) to be predicted. Different kernels were selected as core tool of GPR, but results demonstrated the capability of radial basis function (RBF) kernel. GPR–RBF structure were optimized using cross-validation technique. Results indicated that input combination including piezometer level and reservoir level of section II, especially piezometer 203 time series led to the best result among all scenarios.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号