首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   2篇
地球物理   2篇
地质学   3篇
  2020年   2篇
  2017年   1篇
  2015年   1篇
  2008年   1篇
排序方式: 共有5条查询结果,搜索用时 156 毫秒
1
1.
Streambed hydraulic conductivity (K) and vertical K (K v) are key controls on groundwater and surface water exchange and biogeochemical fluxes through the hyporheic zone, but drivers of transient hydraulic properties in different fluvial environments are poorly understood. This study combines hydrogeology, geophysics, and sedimentology to reveal mechanisms of K and K v transience in the upper 0.5 m of a sandy streambed during low discharge. Hydraulic tests (44 slug tests, 130 falling-head permeameter tests) and 130 grain-size analyses were repeated three times over 8 weeks on a 1,200 m2 grid spanning: (a) a channel with continuously flowing water and mobile bed load; (b) an adjacent mid-channel bar that was stationary and infrequently submerged. Aerial photographs and ground-penetrating radar show scour and complete reworking of fluvial sediments in the channel. Bar sediments below the water table remained immobile, but infrequent flows of moderate discharge reworked the uppermost few centimetres of the bar top. Despite differences in sediment mobility and stream flow characteristics across environments, K and K v exhibited order-of-magnitude differences in spatial heterogeneity and temporal variability in both the channel and bar. Mean K and K v values in the channel were comparatively stable over time. In the immobile bar, mean K declined 20% and K v declined 26% after increased discharge temporarily inundated the bar. Grain-size distributions were steady across both environments over time, but repeat geophysical surveys of the bar show a decrease in electrical conductivity, likely from porosity reduction. These findings suggest that sediment dynamics and stream flow characteristics in different streambed environments are important drivers of K transience during low discharge conditions. Specifically, pore clogging can be an important mechanism of transience over short durations (weeks to months) in immobile sediments subject to infrequent flows and minor reworking.  相似文献   
2.
Buried valleys are characteristic features of glaciated landscapes, and their deposits host important aquifers worldwide. Understanding the stratigraphic architecture of these deposits is essential for protecting groundwater and interpreting sedimentary processes in subglacial and ice‐marginal environments. The relationships between depositional architecture, topography and hydrostratigraphy in dissected, pre‐Illinoian till sheets is poorly understood. Boreholes alone are inadequate to characterize the complex geology of buried valleys, but airborne electromagnetic surveys have proven useful for this purpose. A key question is whether the sedimentary architecture of buried valleys can be interpreted from airborne electromagnetic profiles. This study employs airborne electromagnetic resistivity profiles to interpret the three‐dimensional sedimentary architecture of cross‐cutting buried valleys in a ca 400 km2 area along the western margin of Laurentide glaciation in North America. A progenitor bedrock valley is succeeded by at least five generations of tunnel valleys that become progressively younger northward. Tunnel‐valley infills are highly variable, reflecting under‐filled and over‐filled conditions. Under‐filled tunnel valleys are expressed on the modern landscape and contain fine sediments that act as hydraulic barriers. Over‐filled tunnel valleys are not recognized in the modern landscape, but where they are present they form hydraulic windows between deep aquifer units and the land surface. The interpretation of tunnel‐valley genesis herein provides evidence of the relationships between depositional processes and glacial landforms in a dissected, pre‐Illinoian till sheet, and contributes to the understanding of the complex physical hydrology of glacial aquifers in general.  相似文献   
3.
Ancient paleovalley fills are typically interpreted in the rock record using over-generalized models without carefully considering modern analogs, especially in light of recent discoveries. It is now known that many Quaternary paleovalleys are compound in origin, exhibit considerable stratigraphic complexity, contain multiple incisions, and can be orders of magnitude larger than their putative ancient counterparts. Compound paleovalley fills in the Lower Pennsylvanian New River Formation (NRF) are directly comparable to these Quaternary analogs, stimulating a paradigm shift in the interpretation of ancient paleovalleys. In the NRF, multiple laterally- and vertically-juxtaposed fill successions, separated by incision surfaces, record high-frequency fluvial responses to external controls within lower-order sequences. Lowstand incision and sediment bypass, as predicted in sequence stratigraphy, is largely discounted by the available evidence and the definition of regional sequence boundaries is not straightforward. The identification of genetic sequences may be the most effective approach to understanding the NRF and, by inference, many other ancient paleovalleys. Results from this study of the NRF promote a revised model for ancient paleovalleys that incorporates: 1) the pre-eminence of compound architecture, 2) periodic episodes of incision and subaerial exposure occurring in response to high-frequency changes in climate or relative sea level, 3) fluvial downcutting as the primary cause of paleovalley incision, although some sediments are still preserved in a net-erosional regime, and 4) composite, time-transgressive sequence boundaries that may be difficult or impossible to correlate regionally.  相似文献   
4.
Extant models predict delta front environments down‐drift of river mouths as unfavourable for organisms because of the physico‐chemical stresses caused by sediment and fresh water influx. This study, however, finds evidence for near‐optimal living conditions down‐drift of contemporaneous mouth bars and distributary channels, as well as at the tops of abandoned lobes, in part of the asymmetrical ‘Notom Delta’ complex of the Ferron Sandstone (Turonian, south‐eastern Utah, USA). Presented herein is a sedimentological and ichnological model using thirty‐two detailed measured sections along a 16 km transect through two continuously exposed, ca 10 m thick allomembers containing delta front, mouth bar and distributary channel facies. Azimuths from sedimentary structures show south‐eastward deflection of near‐shore palaeocurrents relative to the inferred north–south shoreline, as well as minor reversal of flow. Two end‐member trace fossil suites are recognized in delta front sandstones: (i) a stressed suite of low abundance, low diversity, diminutive traces reflecting mobile deposit feeding, resting and locomotion behaviours; and (ii) a comparatively unstressed, high abundance, moderate diversity suite with a regular, heterogeneous distribution of deep, vertical or U‐shaped suspension‐feeding burrows which, in places, thoroughly homogenize the sandstones. The down‐drift side of the delta was colonized by suspension feeders during seasonal reversal of the seaway gyre when mud plumes were swept northward or when river‐derived nutrients were sufficiently concentrated relative to fresh water and sediment input. During normal seaway circulation, very high sedimentation rates and mud‐laden, wave‐dampened waters down‐drift of the river mouths heightened the preservation potential of the pervasively bioturbated facies. Up‐drift of the river mouths, these bioturbated facies were either not preserved or not developed until the lobe was abandoned. This alternative model for delta planform asymmetry contributes to the refinement of facies models for deltaic systems and provides a framework for predicting the distribution of bioturbation‐enhanced porosity and permeability in lobe‐deflected deltas.  相似文献   
5.
Yao Li  Liu  Can  Ou  Gengxin  Wang  Zhaowei  Korus  Jesse  Jiang  Ran 《Water Resources》2020,47(5):846-854
Water Resources - This study explores the statistical relationship between spectral reflectance and hydraulic conductivity (K) of fluvial sediments in two Nebraska rivers. The spectral reflectance...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号