首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
地球物理   6篇
  2023年   1篇
  2022年   1篇
  2018年   2篇
  2016年   1篇
  2015年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
2.
Journal of Seismology - Seismic attenuation and the associated quality factor (Q) have long been studied in various sub-disciplines of seismology, ranging from observational and engineering...  相似文献   
3.
We study site effects using 520 weak motion earthquake records from a vertical array in Aegion, Greece. The array is inside a basin, has four stations in soil, and one in bedrock (178 m depth). The site is marked by high seismicity and complex surface geology. We first use the records to establish the downhole accelerometer orientations and their evolution with time. Then we estimate site effects using empirical spectral ratios with and without a reference site (standard and horizontal-to-vertical spectral ratio). We find significant site amplification which cannot be accounted for by 1D model predictions, along with a significant difference in the amplification level between the two horizontal components. These are indications of 2D effects, namely surface waves generated at the basin edge. The difference in amplification between the horizontal components is maximised when these are rotated with respect to the orientation of the basin edge. The strongest amplification takes place in the direction parallel to the basin edge (SH, or out-of-plane motion), and is up to 2 times higher than in the perpendicular direction (SV, or in-plane motion). This directional effect on the amplification is corroborated by numerical 2D modelling using incident SH and SV waves, with the former possibly generating strong Love waves. In the records, the directionality is clear for windows containing the largest amplitudes of the records (S waves and strong surface waves), while it tends to vanish for coda-wave windows. This directionality is also observed when using response spectral ratios rather than Fourier ratios. We compute soil-to-rock amplification factors for peak ground acceleration (PGA) and find it is significantly higher than what is predicted by current design codes. We attribute this difference to the basin edge amplification, linear soil behaviour, and to the inability of simple scalar values like PGA to describe complex amplification effects. Finally, we analyse the earthquake records at a surface station near the slope crest and do not observe significant topographic amplification.  相似文献   
4.
Accelerometric data from the well-studied valley EUROSEISTEST are used to investigate ground motion uncertainty and variability. We define a simple local ground motion prediction equation (GMPE) and investigate changes in standard deviation (σ) and its components, the between-event variability (τ) and within-event variability (φ). Improving seismological metadata significantly reduces τ (30–50%), which in turn reduces the total σ. Improving site information reduces the systematic site-to-site variability, φ S2S (20–30%), in turn reducing φ, and ultimately, σ. Our values of standard deviations are lower than global values from literature, and closer to path-specific than site-specific values. However, our data have insufficient azimuthal coverage for single-path analysis. Certain stations have higher ground-motion variability, possibly due to topography, basin edge or downgoing wave effects. Sensitivity checks show that 3 recordings per event is a sufficient data selection criterion, however, one of the dataset’s advantages is the large number of recordings per station (9–90) that yields good site term estimates. We examine uncertainty components binning our data with magnitude from 0.01 to 2 s; at smaller magnitudes, τ decreases and φ SS increases, possibly due to κ and source-site trade-offs Finally, we investigate the alternative approach of computing φ SS using existing GMPEs instead of creating an ad hoc local GMPE. This is important where data are insufficient to create one, or when site-specific PSHA is performed. We show that global GMPEs may still capture φ SS , provided that: (1) the magnitude scaling errors are accommodated by the event terms; (2) there are no distance scaling errors (use of a regionally applicable model). Site terms (φ S2S ) computed by different global GMPEs (using different site-proxies) vary significantly, especially for hard-rock sites. This indicates that GMPEs may be poorly constrained where they are sometimes most needed, i.e., for hard rock.  相似文献   
5.
With a new era emerging in the field of lunar exploration and habitation, there is a need for research on structural forms made of local soil material (regolith), which will be able to endure the extreme conditions in harsh environments (e.g., extreme temperature fluctuations, solar and cosmic radiation, meteor showers, strong ground motions, etc.). The present work focuses on understanding the dynamic and seismic behaviour of certain structural typologies of monolithic arches by means of finite element analysis (FEA). These typologies were extensively investigated previously, using static analyses accounting for the reduced gravitational field on the moon, and proved to be of the optimum shape against certain loading scenarios. Specifically, these optimal monolithic arch forms (named enhanced varying-thickness arches – EVTAs) examined herewith, are described by varying-thickness geometry, properly enhanced at certain weak points for increasing their structural stability. Aiming at a fair comparison, the seismic behaviour of EVTAs is contrasted to that of their corresponding monolithic constant-thickness (CTAs) counterparts (having the same amount of structural material). After defining an appropriate damage state, the authors conduct preliminary pushover analyses to determine the structural capacity of the arches against lateral loading. Subsequently, the modal analysis of the EVTAs shows that the second/vertical mode exhibits a natural period almost equal to that of their first/translational mode and substantially longer than the corresponding second/vertical mode of their CTA counterparts, indicating a potential vulnerability along the vertical excitation. Furthermore, taking into account that shallow moonquakes are comparable to intraplate earthquakes in terms of hazard potential, the authors produce sets of stochastic seismic excitations used as time histories for seismic analyses. The probability of exceedance of the defined damage state as a function of the peak ground acceleration (PGA) is presented through indicative fragility curves, where the structural superiority of EVTAs against their CTA counterparts is demonstrated.  相似文献   
6.
A key component in seismic hazard assessment is the estimation of ground motion for hard rock sites, either for applications to installations built on this site category, or as an input motion for site response computation. Empirical ground motion prediction equations (GMPEs) are the traditional basis for estimating ground motion while VS30 is the basis to account for site conditions. As current GMPEs are poorly constrained for VS30 larger than 1000 m/s, the presently used approach for estimating hazard on hard rock sites consists of “host-to-target” adjustment techniques based on VS30 and κ0 values. The present study investigates alternative methods on the basis of a KiK-net dataset corresponding to stiff and rocky sites with 500 < VS30 < 1350 m/s. The existence of sensor pairs (one at the surface and one in depth) and the availability of P- and S-wave velocity profiles allow deriving two “virtual” datasets associated to outcropping hard rock sites with VS in the range [1000, 3000] m/s with two independent corrections: 1/down-hole recordings modified from within motion to outcropping motion with a depth correction factor, 2/surface recordings deconvolved from their specific site response derived through 1D simulation. GMPEs with simple functional forms are then developed, including a VS30 site term. They lead to consistent and robust hard-rock motion estimates, which prove to be significantly lower than host-to-target adjustment predictions. The difference can reach a factor up to 3–4 beyond 5 Hz for very hard-rock, but decreases for decreasing frequency until vanishing below 2 Hz.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号