首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   1篇
  国内免费   2篇
地球物理   15篇
地质学   16篇
海洋学   8篇
天文学   2篇
自然地理   4篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1990年   5篇
  1988年   1篇
  1987年   3篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
排序方式: 共有45条查询结果,搜索用时 15 毫秒
1.
Microbial manganese oxidation in seawater was carried out in enrichment cultures which were obtained from the seawater supply system at the Marine Science Museum, Tokai University (Shimizu-shi, Japan). The manganese oxide formed was well-crystallized todorokite. The major element composition was within the range of marine manganese concretions and the O/Mn molar ratio was 1.8. The conditions for formation of manganese oxide minerals in marine environments are discussed on the basis of these results.  相似文献   
2.
Excess CO2 and pHexcess showing an increase in dissolved inorganic carbon and a decrease in pH from the beginning of the industrial epoch (middle of the 19th century) until the present time have been calculated in the intermediate water layer of the northwestern Pacific and the Okhotsk Sea. It is concluded that: (1) The Kuril Basin (Okhotsk Sea) and the Bussol' Strait areas are characterized by the greatest concentrations of excess CO2 at isopycnal surfaces due to the processes of formation and transformation of intermediate water mass. (2) The largest difference in excess CO2 concentration between the Okhotsk Sea and the western subarctic Pacific (about 8 µmol/kg) is found at the = 27.0. (3) The difference in excess CO2 between the western subarctic Pacific and subtropical regions is significant only in the upper part of the intermediate water layer ( = 26.7–27.0). (4) About 10% of the excess CO2 accumulation in the subtropical north Pacific is determined by water exchange with the subarctic Pacific and the Okhotsk Sea.  相似文献   
3.
Thirteen vertical profiles of 226Ra and 222Rn in the near-surface water were obtained in the western North Pacific in winter, and the gas transfer velocities across the air-sea interface were estimated. The transfer velocities found by applying a steady state model varied widely from 2.1 to 30.2 m day−1 with a mean of 9.4 m day−1. The mean value is almost 5 times higher than that in summer in other oceans, and the maximum value is a record high for world oceans. This is partly due to the inadequacy of the steady state model, which overestimates when stronger winds blow in more recent days than the 222Rn half-life of about 4 days. In fact, a strong low pressure zone passed through the station about 2 days earlier, which was one of the low pressure zones that with a period of develop once a week or so in the northwestern North Pacific in winter. Instead of steady-state removal, if half of the radon removal occurred sporadically every 7 days, and the last removal took place two days before the observation, the transfer velocity would be 26 m day−1. Our mean transfer velocity, which is less than 20% different from the steady state value including both overestimated and underestimated values, 9.4 ± 4.8 m day−1, seems to represent the mean state of this region in winter. This suggests that the gas exchange fluxes under extremely rough conditions in the open ocean are larger than those estimated by using a transfer velocity equation with a linear or quadratic relationship with wind speed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
4.
Abstract. Fluid inclusion and oxygen isotope studies are performed to obtain temperatures and oxygen isotopic compositions of hydrothermal fluids for the vein-type tungsten-copper deposit at Takatori in Ibaraki Prefecture, Japan. Temperatures of the hydrothermal fluids are calculated from fluid inclusion data. The calculation incorporates the effects of the salinity, gas concentration, and fluid pressure. The fluid temperatures range from 370 to 460C. For these calculations, this study obtains a density equation for H2O-NaCl-CO2 solution at the vapor-liquid two-phase boundary. Then the present study combines the obtained equation with the equation of state by Bowers and Helgeson (1983).
The fluid temperatures determined in this study are applied to the calculation of oxygen isotopic compositions of the hydrothermal fluids. The calculation of the oxygen isotopic compositions is based on the oxygen isotope analyses of vein quartz. The oxygen isotopic compositions of vein quartz range from +13.5 to +14.4 % relative to SMOW. Then, the oxygen isotopic compositions of the hydrothermal fluids in equilibrium with the vein quartz are calculated to be from +9.7 to +10.5 %. These δ18Ofluid values agree with those of magmatic fluids derived from the ilmenite-series granitic rock, which is related to the mineralization. Keywords: Takatori tungsten-copper deposit, fluid inclusion, oxygen isotope, vein quartz, H2O-NaCl-CO2 solution, density  相似文献   
5.
Summary The chemical composition of olivine phenocrysts was determined for 13 basaltic samples taken from the central part of the Cameroon Volcanic line to estimate the compositions of the primary olivine phenocrysts and the primary magmas. The Mg/(Mg + Fe) ratios of the olivines attain 0.91, though many of the magnesian olivines are identified on a textural basis as xenocrysts from peridotite inclusions. Most magnesian olivine phenocrysts have Mg/(Mg + Fe) ratios of 0.87–0.88 and NiO contents of 0.32–0.35 wt %. The NiO versus Mg/(Mg + Fe) ratios of the olivines can be used to estimate the compositions of the primary phenocrysts in a range of Mg/(Mg + Fe) = 0.88–0.90. Assuming the Fe(3)/(total Fe) ratios of the magmas are 0.17–0.25, which is estimated from the Fe-Mg partitioning between plagioclase and groundmass, the compositions of the primary magmas were obtained from the Fe2+-Mg partition equilibrium with the primary olivine phenocrysts. The primary magmas of the Cameroonian basalts have 13.5 ± 4.0 wt MgO, which is similar to the compositions of basalts with highest MgO contents reported so far from the Cameroon volcanic line.
Olivin Kristalle in einigen Basalten aus Kamerun: Hinweise auf die Zusammensetzung des primitiven Magmas
Zusammenfassung Die chemische Zusammensetzung von Olivin Phenokristallen wurde in 13 Basalt-Proben, die vom Zentralteil .des Kamerun-Vulkangürtels stammen, bestimmt, um Hinweise auf die Zusammensetzung der primären Olivineinsprenglinge and des primären Magmas zu erlangen. Die Mg/(Mg + Fe) Verhältnisse der Olivine reichen bis 0.91, obwohl viefle dieser Mg-Olivine auf Grund textureller Kriterien als aus Peridotit-Einschlüssen stammende Xenokristalle zu identifizieren sind. Die Mg/(Mg + Fe) Verhältnsse der Hauptmasse der Olivin-Phenokristalle liegen im Bereich von 0.87 bis 0.88, die Ni0 Gehalte zwischen 0.32 und 0.35 Gew %. Die Ni0 gegen Mg/(Mg + Fe) Verhältnisse eignen sich zur Abschätzung der Zusammensetzung der primären Phenokristalle, solange die Mg/(Mg + Fe) Verhältnisse im Bereich von 0.88 bis 0.90 liegen. Die Zusammensetzung des Primärmagmas wurde mittels der Fe2+-Mg-Verteilung zwischen dem Magma und den sich mit dem Magma im Gleichgewicht befindlichen primären Olivinkristallen unter der Annahme eines Fe3+/Fe total Verhältnisses von 0.17–0.25, welches sich aus der Mg-Fe Verteilung zwischen Plagioklas und Grundmasse ergibt, bestimmt. Demnach ergibt sich für das primäre Magma der Kamerun Basalte ein MgO Gehalt von 13.5 + 4.0 Gew%. Dieser Wert ist mit der Zusammensetzung von Basalten mit höchsten MgO-Gehalten, wie sie bisher vom Kamerun-Vulkangürtel berichtet worden sind, vergleichbar.


With 6 Figures  相似文献   
6.
Two sandy sediment cores (Cores D227-120 and D380) were collected from inside a deep-sea giant clam (Calyptogena soyoae) community off Hatsushima Island, western Sagami Bay, central Japan (35°59.9′N, 139°13.6′E; 1160 m deep) and a muddy sediment core (Core D227-202) was obtained from outside the community by the submersibleShinkai 2000. The chloride concentration of the pore waters is constant vertically and sulfate reduction using sedimentary organic matter occurs in Core D227-202 (21 cm long). The chloride concentrations are lower by 7% at the 7.5–9 cm depth in Core D227-120 (9 cm long) and by 3% at the 11–12 cm depth in Core D380 (16 cm long) than those of the overlying bottom waters in the cores from inside of the community. Sulfate concentration decreases remarkably and dissolved inorganic carbon, alkalinity, ammonium-N, and hydrogen sulfide concentrations increase significantly with increasing depth in Core D380.δ34S values of sulfate ions increase from +20.5 to +35.3‰ andδ13C values of dissolved inorganic carbon decrease drastically from −7.0 to −45‰ with increasing depth from the top to the bottom of the core, although theδ13C values of the organic carbon of the sediments are−23.7 ± 0.9‰ in Core D380. These results indicate that sulfate reduction using methane is active within the sediments just beneath the living clams and that the hydrogen sulfide produced can be used by endosymbiotic sulfur oxidizing bacteria living in the gills ofC. soyoae in the community.  相似文献   
7.
Oxygen isotope exchange between anhydrite and water was studied from 100 to 550°C, using the partial equilibrium method. The exchange rate was extremely low in NaCl solution. In the lower-temperature range, acid solutions were used to produce sufficient reaction to determine the oxygen isotope fractionation factors. The fractionation factors obtained in the present study are definitely different from those given by Lloyd [8]. They are similar to those for the HSO4?-water system studied by Mizutani and Rafter [19], and are consistently 2‰ higher than those of the barite-water system by Kusakabe and Robinson [5]. The temperature dependence of the oxygen isotope fractionation factors was calculated by the least squares method in which the weight was taken to be inversely proportional to the experimental error. The fractionation is given by:103lnαanhydrite-water=3.21×(103/T)2?4.72Available δ18O values of natural anhydrite were used to test the validity of this expression. It is shown that this newly revised geothermometer can be successfully applied to natural hydrothermal anhydrite.  相似文献   
8.
9.
A bimodal volcanic suite with KAr ages of 0.05–1.40 Ma was collected from the Sumisu Rift using alvin. These rocks are contemporaneous with island arc tholeiite lavas of the Izu-Ogasawara arc 20 km to the east, and provide a present day example of volcanism associated with arc rifting and back-arc basin initiation. Major element geochemistry of the basalts is most similar to that of basalts found in other, more mature back-arc basins, which indicates that back-arc basins need not begin their magmatic evolution with lavas bearing strong arc signatures.Volatile concentrations distinguish Sumisu Rift basalts from island arc basalts and MORB. H2O contents, which are at least four times greater than in MORB, suppress plagioclase crystallization. This suppression results in a more mafic fractionating assemblage, which prevents Al2O3 depletion and delays the initiation of Fe2O3(tot) and TiO2 enrichment. However, unlike arc basalts,Fe3+/ΣFe ratios are only slightly higher than in MORB and are insufficient to cause magnetite saturation early enough to suppress Fe2O3(tot) and TiO2 enrichment. Thus, major element trends are more similar to those of MORB than arcs.H2O, CO2 and S are undersaturated relative to pure phase solubility curves, indicating exsolution of an H2O-rich mixed gas phase. HighH2O/S, highδD, and low (MORB-like)δ34S ratios are considered primary and distinctive of the back-arc basin setting.  相似文献   
10.
The ages of fossil planktonic foraminifera,Pulleniatina obliquiloculata, in sediments (core 3bPC) from the western North Pacific were determined by aspartic acid chronology, which uses the racemization reaction rate constant of aspartic acid (kAsp). Aspartic acid racemization-based ages (Asp ages) ranged from 7,600 yrBP at the surface, to 307,000 yrBP at a depth of 352.9 cm in the sediments. This sediment core was also dated by the glacial-interglacial fluctuation of δ18O chronology, and the ages determined by both chronologies were compared. The ages derived from aspartic acid chronology and δ18O stratigraphy were more or less consistent, but there appeared to be some differences in age estimates between these two dating methods at some depths within the core. In the core top sediments, the likely cause for the age discrepancy could be the loss of the surface sediment during sampling of the core. At depths of 66.3 and 139 cm within the core, Asp ages indicated reduced sedimentation rates duringca. 60,000-80,000 yrBP andca. 140,000–190,000 yrBP. The maximum age differences in both chronologies are 33,000 yr and 46,600 yr during each of these periods. These anomalous reductions in sedimentation rates occurring during these periods could possibly be related to some geological events, such as an increased dissolution effect of the calcium carbonate in the western North Pacific. Another possible reason for these age differences could be the unreliability in δ18O ages of core 3bPC as they were estimated by δ18O ages of another core, 3aPC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号