首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地球物理   1篇
地质学   2篇
  2020年   1篇
  2014年   1篇
  2013年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
The processing of remotely sensed data includes compression, noise reduction, classification, feature extraction, change detection and any improvement associated with the problems at hand. In the literature, wavelet methods have been widely used for analysing remote sensing images and signals. The second-generation of wavelets, which is designed based on a method called the lifting scheme, is almost a new version of wavelets, and its application in the remote sensing field is fresh. Although first-generation wavelets have been proven to offer effective techniques for processing remotely sensed data, second-generation wavelets are more efficient in some respects, as will be discussed later. The aim of this review paper is to examine all existing studies in the literature related to applying second-generation wavelets for denoising remote sensing data. However, to make a better understanding of the application of wavelet-based denoising methods for remote sensing data, some studies that apply first-generation wavelets are also presented. In the part of hyperspectral data, there is a focus on noise removal from vegetation spectrum.  相似文献   
2.
Wavelet-based methods have been widely used for compression of remotely sensed images and data. Recently, second generation of wavelets which is based on a method called lifting has proven to be more effective than traditional wavelets as it provides lossless compression, lowers the memory usage, and is computationally faster. This study explores the literature related to applying second-generation wavelets for the compression of remote sensing data. Nevertheless, in order to compare the results of two wavelet types, some applications of traditional wavelets are also presented.  相似文献   
3.
Innovation and understanding hydrological processes are intimately linked. Existing research has demonstrated the role of technological, societal, and political drivers in shaping and delivering new understandings in hydrological processes. In this paper we pose three research questions to explore how innovation can further our understanding of hydrological processes, if working towards the sustainable development goals (SDGs) provides a helpful focus, and whether specific mechanisms can be used to facilitate innovation and research into hydrological processes. First, we examine key aspects of innovation and explore innovation in the context of water security. We then present a series of innovation projects to determine their effectiveness in delivering innovation in managing hydrological processes, but also their contribution to scientific understanding. Our research suggests that product and process innovation were more closely related to increasing scientific understanding of hydrological processes than other forms of innovation. The NE Water Hub demonstrated that the design of the innovation ecosystem was crucial to its success and provides a model to integrate innovation and research more widely to further scientific understanding and deliver behaviour change to address the SDGs.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号