首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31205篇
  免费   1600篇
  国内免费   2714篇
测绘学   1879篇
大气科学   3633篇
地球物理   6314篇
地质学   14900篇
海洋学   1895篇
天文学   1891篇
综合类   2826篇
自然地理   2181篇
  2024年   30篇
  2023年   123篇
  2022年   305篇
  2021年   384篇
  2020年   276篇
  2019年   398篇
  2018年   5079篇
  2017年   4326篇
  2016年   2942篇
  2015年   623篇
  2014年   554篇
  2013年   460篇
  2012年   1458篇
  2011年   3183篇
  2010年   2450篇
  2009年   2765篇
  2008年   2289篇
  2007年   2710篇
  2006年   427篇
  2005年   507篇
  2004年   616篇
  2003年   642篇
  2002年   475篇
  2001年   261篇
  2000年   280篇
  1999年   262篇
  1998年   258篇
  1997年   215篇
  1996年   195篇
  1995年   192篇
  1994年   150篇
  1993年   154篇
  1992年   108篇
  1991年   66篇
  1990年   55篇
  1989年   54篇
  1988年   50篇
  1987年   43篇
  1986年   29篇
  1985年   14篇
  1984年   12篇
  1983年   11篇
  1982年   11篇
  1981年   28篇
  1980年   24篇
  1978年   3篇
  1977年   4篇
  1976年   9篇
  1958年   4篇
  1954年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
This paper studies dynamic crack propagation by employing the distinct lattice spring model (DLSM) and 3‐dimensional (3D) printing technique. A damage‐plasticity model was developed and implemented in a 2D DLSM. Applicability of the damage‐plasticity DLSM was verified against analytical elastic solutions and experimental results for crack propagation. As a physical analogy, dynamic fracturing tests were conducted on 3D printed specimens using the split Hopkinson pressure bar. The dynamic stress intensity factors were recorded, and crack paths were captured by a high‐speed camera. A parametric study was conducted to find the influences of the parameters on cracking behaviors, including initial and peak fracture toughness, crack speed, and crack patterns. Finally, selection of parameters for the damage‐plasticity model was determined through the comparison of numerical predictions and the experimentally observed cracking features.  相似文献   
2.
ABSTRACT

High performance computing is required for fast geoprocessing of geospatial big data. Using spatial domains to represent computational intensity (CIT) and domain decomposition for parallelism are prominent strategies when designing parallel geoprocessing applications. Traditional domain decomposition is limited in evaluating the computational intensity, which often results in load imbalance and poor parallel performance. From the data science perspective, machine learning from Artificial Intelligence (AI) shows promise for better CIT evaluation. This paper proposes a machine learning approach for predicting computational intensity, followed by an optimized domain decomposition, which divides the spatial domain into balanced subdivisions based on the predicted CIT to achieve better parallel performance. The approach provides a reference framework on how various machine learning methods including feature selection and model training can be used in predicting computational intensity and optimizing parallel geoprocessing against different cases. Some comparative experiments between the approach and traditional methods were performed using the two cases, DEM generation from point clouds and spatial intersection on vector data. The results not only demonstrate the advantage of the approach, but also provide hints on how traditional GIS computation can be improved by the AI machine learning.  相似文献   
3.
The effects of natural fish oil,DHA oil and soybean lecithin in microparticulate diets on stress tolerance of larval gilthead seabream(Sparus aurata)were investigated after 15 days feeding trials.The tolerance of larval gilthead seabream to various stress factors such as exposure to air(lack of dissolved oxygen),changes in water temperature(low)and salinity(high) were determined.This study showed that microparticulate diet with natural fish oil and soybean lecithin was the most effective for in-creasing the tolerance of larval gilthead seabream to various stresses,and that microparticulate diet with natural fish oil and palmitic acid(16:0)was more effective than microparticulate diet with DHA oil and soybean lecithin.  相似文献   
4.
Nowadays, the research works on landscape at fine scales using high-resolution images are uncommon.This research is based on the analysis of the combination of remote sensing data (1KONOS imagery acquired in 2002 and historical aerial photo taken in 1942). In the paper, the ecotopes in Qiujiadou and Xishao villages in Yixing City of Jiangsu Province in 1942 and 2002 were compared and landscape changes as well as the causes of the considerable changes were analyzed. It was found that the ecotope changes were at greater level in some aspects such as water surface and perennial vegetation coverage etc. This study at fine scale is globally significant for the rural areas, especially for the subsistence agricultural land, which occupies larger percentage in the earth. And it analyzes the structure of landscape based on a new landscape classification system--stratifications method.  相似文献   
5.
Dry valleys are a striking geographic landscape in Hengduan Mountains Region and are characterized by low rainfall, desert type of vegetation and fragile environment. Past efforts and resources have been concentrated mainly on rehabilitation of degraded ecosystem and fragile environment, particularly reforestation, while socio-economic development has been largely overlooked. Despite successes in pocket areas, the overall trend of unsustainability and environmental deterioration are continuing. It is important to understand that uplift of the Tibetan Plateau is the root cause of development of dry valleys, and development and formation of dry valleys is a natural process. Human intervention has played a secondary role in development of dry valleys and degradation of dry valleys though human intervention in many cases has speeded up environmental degradation of the dry valleys. It is important to understand that dry valleys are climatic enclaves and an integrated approach that combines rehabilitation of degraded ecosystems and socio-economic development should be adopted if the overall goal of sustainable development of dry valleys is to be achieved. Promotion of niche-based cash crops, rural energy including hydropower, solar energy, biogas and fuelwood plantation is recommended as the priority activities.  相似文献   
6.
AGGLOMERATION AND RADIATION EFFECT OF THE PULL OF URBANIZATION   总被引:2,自引:1,他引:1  
In order to explore the train of thought for China‘s urbanizing development and coordinated rural eco-nomic development, and to find good ways of solving rural problems through urbanization, this paper absorbs the push-and-pull forces theory and the systematic dynamic theory in the traditional population migration theories, views urbanization as a dynamic system, makes research on the push-and-pull mechanism of urbanization. The pulling power of urbanization is analyzed according to two aspects, the agglomeration effect and the radiation effect of cities. The agglomeration effect provides continuous propelling force for urbanization, and the radiation effect further accelerates the urbanization process by pushing forward the development of rural economy. Of course, the slow de-velopment of urbanization can result in the hindrance to rural economic development.  相似文献   
7.
Based on the analysis of the development of GIS technology and application,this paper brought forward the concept of GoGIS,namely Cooperative GIS ,CoGIS is GIS facing group-users and supporting human-human interaction,which makes it differ from the former GISs,Then,the characteristics of general Computer Spport Cooperative Work (CSCW)applications and the complexity of Geographic Information Science were analyzed,and the conclusion the CoGIS was not a simple GIS layer on CSCW was reached,Further,this paper gaver the hierarchical architecture of CoGIS,and analyzed the coperative platform in detail from the following:1)basic elements;2) collaboration patterns;3) cooperation control mechanism;4) synchronization mechanism;5) security and 6) group communication and so on.With those,the problems about GIS applications are discussed,such as 1)distributed multi-source GIS information and knowledge sharing platform;2)the fusion and visualization of GIS information;3)virtual reality cooperative modeling;4) dymamic simulation;5)expert system and 6) decision-making.Finally,this paper analyzed CoGIS application mode in brief.  相似文献   
8.
Approach to Mountain Hazards in Tibet, China   总被引:1,自引:1,他引:0  
Tibet is located at the southwest boundary of China. It is the main body of the Qinghai-Tibet Plateau, the highest and the youngest plateau in the world. Owing to complicated geology, Neo-tectonic movements, geomorphology, climate and plateau environment, various mountain hazards, such as debris flow, flash flood, landslide, collapse, snow avalanche and snow drifts, are widely distributed along the Jinsha River (the upper reaches of the Yangtze River), the Nu River and the Lancang River in the east, and the Yarlungzangbo River, the Pumqu River and the Poiqu River in the south and southeast of Tibet. The distribution area of mountain hazards in Tibet is about 589,000 km^2, 49.3% of its total territory. In comparison to other mountain regions in China, mountain hazards in Tibet break out unexpectedly with tremendously large scale and endanger the traffic lines, cities and towns, farmland, grassland, mountain environment, and make more dangers to the neighboring countries, such as Nepal, India, Myanmar and Bhutan. To mitigate mountain hazards, some suggestions are proposed in this paper, such as strengthening scientific research, enhancing joint studies, hazards mitigation planning, hazards warning and forecasting, controlling the most disastrous hazards and forbidding unreasonable human exploring activities in mountain areas.  相似文献   
9.
1 Introduction Inrecentyearstherehasbeengrowingresearchin terestinthetwo dimensional (2 D )systemtheory .The 2 Dsystemsmayfindapplicationsinareassuchasmarineseismicdataprocessingandimageprocessing .Althoughmoreandmorevaluableresultshavebeengained ,mos…  相似文献   
10.
利用钻孔测井资料并运用地层倾角测量信息分析法,给出了江汉盆地地应力最大水平主压应力方向为NE60~65°  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号