首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
地球物理   8篇
地质学   11篇
天文学   1篇
  2015年   1篇
  2014年   3篇
  2012年   4篇
  2009年   3篇
  2007年   3篇
  2006年   1篇
  2003年   1篇
  2000年   1篇
  1995年   1篇
  1993年   1篇
  1989年   1篇
排序方式: 共有20条查询结果,搜索用时 468 毫秒
1.
2.
The use of real-time landslide early warning systems is attracting the attention of the scientific community, since it allows to assess “where” and “when” a shallow rainfall-induced landslide might occur by coupling rainfall amounts, hydrological models and slope-stability analysis. The paper deals with the main results of a back analysis, which refers to the application of a physically based stability model [Shallow Landslides Instability Prediction (SLIP)] on regional scale. The analysis concerns the occurrence of some recent rainfall-induced shallow landslides in the municipal territory of Broni, in the area of Oltrepò Pavese (Northern Italy). The study area is a hilly region 2.4 km2 wide, where more than 40 % of the territory has slopes steeper than 15° and altitudes are between 90 and 250 m a.s.l. As regards the geologic setting, clayey-silty shallow colluvial deposits, with a maximum thickness of about 3 m, overlap a bedrock made of clayey shales, calcareous flysch and marls. The SLIP model is based on the limit equilibrium method applied to an infinite slope and on the Mohr–Coulomb strength criterion for the soil. By assuming that the main hydro-geotechnical process that leads to failure is the saturation of parts of the soil, the model allows to take into account the condition of partial saturation of the soil. The safety factor (F S ) of a slope is also function of previous rainfalls. After the implementation of the model at territory scale, the input data have been introduced through a geographic information systems platform. In the current paper we mainly intend to evaluate the performance of SLIP at catchment scale, by comparison to (1) observed landslide events and (2) another well-established physically based model (TRIGRS). Further, we want to assess the suitability of the model as early warning tool. The results produced by the model are analyzed both in terms of safety factor maps, corresponding to some particular rainfall events, and in terms of the time-varying percentage of unstable areas over a 2-year span period. The paper shows the comparison between observed landslide localizations and model predictions. A quantitative comparison between the SLIP model and TRIGRS is presented, only for the most important event that occurred during the analyzed period. Overall, the results of the stability analyses based on observed rainfalls show the capability of the SLIP model to predict, in real-time and on a wide area, the occurrence of the analyzed phenomena.  相似文献   
3.
We report on two ASCA observations of the high-mass X-ray binary pulsar OAO 1657−415. A short observation near mid-eclipse caught the source in a low-intensity state, with a weak continuum and iron emission dominated by the 6.4-keV fluorescent line. A later, longer observation found the source in a high-intensity state and covered the uneclipsed through mid-eclipse phases. In the high-intensity state, the non-eclipse spectrum has an absorbed continuum component due to scattering by material near the pulsar and 80 per cent of the fluorescent iron emission comes from less than 19 light-second away from the pulsar. We find a dust-scattered X-ray halo whose intensity decays through the eclipse. We use this halo to estimate the distance to the source as 7.1 ± 1.3 kpc.  相似文献   
4.
The article relates the main findings of a recent investigation aimed at modeling the triggering of shallow landslides. A simplified model for assessing the safety factor of potentially unstable slopes, directly related with rainfall trends, was developed. Based on the geometric characteristics of the slope, the geotechnical properties, and strength parameters of the soil, the model makes it possible to define a safety factor of a slope as a function of time. The model is based on the limit equilibrium method and takes into account the seepage of underground water. The safety factor is, in turn, related to the seasonal rainfall. The model was applied on a local scale to some historical cases which had occurred recently in Northern Italy. The paper shows how the results of the application of the model on a local scale achieve a good agreement between the instability condition and the real date of each considered event.  相似文献   
5.
Nisyros island is a calc-alkaline volcano, built up during the last 100 ka. The first cycle of its subaerial history includes the cone-building activity with three phases, each characterized by a similar sequence: (1) effusive and explosive activity fed by basaltic andesitic and andesitic magmas; and (2) effusive andextrusive activity fed by dacitic and rhyolitic magmas. The second eruptive cycle includes the caldera-forming explosive activity with two phases, each consisting of the sequence: (1) rhyolitic phreatomagmatic eruptions triggering a central caldera collapse; and (2) extrusion of dacitic-rhyolitic domes and lava flows. The rocks of this cycle are characteized by the presence of mafic enclaves with different petrographic and chemical features which testify to mixing-mingling processes between variously evolved magmas. Jumps in the degree of evolution are present in the stratigraphic series, accompanied by changes in the porphyritic index. This index ranges from 60% to about 5% and correlates with several teochemical parameters, including a negative correlation with Sr isotope ratios (0.703384–0.705120). The latter increase from basaltic andesites to intermediate rocks, but then slightly decrease in the most evolved volcanic rocks. The petrographic, geochemical and isotopic characteristics can be largely explained by processes occurring in a convecting, crystallizing and assimilating magma chamber, where crystal sorting, retention, resorption and accumulation take place. A group of crystal-rich basaltic andesites with high Sr and compatible element contents and low incompatible elements and Sr isotope ratios probably resulted from the accumulation of plagioclase and pyroxene in an andesitic liquid. Re-entrainment of plagioclase crystals in the crystallizing magma may have been responsible for the lower 87Sr/86Sr in the most evolved rocks. The gaps in the degree of evolution with time are interpreted as due to liquid segregation from a crystal mush once critical crystallinity was reached. At that stage convection halted, and a less dense, less porphyritic, more evolved magma separated from a denser crystal-rich magma portion. The differences in incompatible element enrichment of pre-and post-caldera dacites and the chemical variation in the post-caldera dome sequence are the result of hybridization of post-caldera dome magmas with more mafic magmas, as represented by the enclave compositions. The occurrence of the quenched, more mafic magmas in the two post-caldera units suggests that renewed intrusion of mafic magma took place after each collapse event.  相似文献   
6.
In the last decades, physically based distributed models turned out rather promising to achieve the space–time assessment of shallow landslides at large spatial scale. This technical note deals with the application of a physically based stability model named Shallow Landslides Instability Prediction (SLIP), which has been adopted by the Department of National Civil Protection of Italy as a prototype early warning system for rainfall-induced shallow landslides on national scale. The model is used as a main methodology to create space–time shallow landslide susceptibility maps based on a simple deterministic slope-stability approach, combined with high-resolution rainfall information and geographic information system-based geospatial datasets. The safety factor as an index to measure slope instability is modeled as function of topographic, geologic, geotechnical and hydrologic variables. Although the main aim of this work was to prove the operational viability of such model on a nationwide domain and some simplification are adopted at this stage, hind cast tests on some relevant case histories of shallow landslides occurred between October 2009 and October 2011 showed that the model has skill in representing both timing and location of those shallow landslides.  相似文献   
7.
In situ Sr-isotope data by microdrilling, coupled with major and trace element analyses, have been performed on plagioclase and clinopyroxene from seven samples collected during the 2002–2003 eruptive crisis at Stromboli volcano (Aeolian Islands, Italy). On 28 December 2002, the persistent moderate explosive activity was broken by an effusive event lasting about 7 months. A more violent explosion (paroxysm) occurred on 5 April 2003. Two magma types were erupted, namely a volatile-poor and highly porphyritic magma (HP-magma) poured out as scoria or lava and a volatile-rich, phenocryst-poor magma (LP-magma) found as pumice. LP-magma differs from the HP-magma also for its slightly less-evolved chemistry, the groundmass composition and the lower Sr-isotope ratios. Micro-Sr-isotope data show the presence of zoned minerals in strong isotope disequilibrium, as previously found in products erupted in 1984, 1985 and 1996 AD, with 87Sr/86Sr values generally decreasing from cores to rims of minerals. Only some outer rims testify for equilibrium with the host groundmass. The internal mineral zones with high Sr-isotope ratios (0.70665–0.70618) are interpreted as ‘antecrysts’, crystallised during the previous activity and recycled in the present-day system since the opening shoshonitic activity of the Recent Period, which occurred at about 2.5 ka ago. This result has implications for the dynamics of the present-day plumbing system of Stromboli at intermediate pressure (about 2–3 km depth) and allows us to propose a model whereby an HP-magma reservoir is directly interconnected at the bottom with a cumulate crystal much reservoir. Efficient mixing between residing HP- and input LP-magmas can occur in this reservoir, due to more similar rheological characteristics of the two magmas than in the conduit, where crystallisation is enhanced by degassing. Antecrysts (and possibly melts) re-enter in the HP-magma reservoir both from the bottom, recycled by ascending LP-magmas crossing the crystal mush, and from the top, recycled by descending degassed and dense HP-magma, residual of the periodic Strombolian explosions at the surface. The isotope variation measured in the groundmasses allows calculating the proportion of the LP-magma entering the shallow HP-magma reservoir at ~20%. From this proportion, we estimate that the total volume of LP-magma input during 2002–2003 closely matches the magma volume erupted in the effusive event, suggesting a steady-state system at broadly constant volume. The comparison with estimates of the LP-magma volume ejected by the paroxysm indicates that the LP-magma amount directly reaching the surface during the 5 April paroxysm is minimal with respect to that entering the system.  相似文献   
8.
9.
10.
The present paper reports the results of a detailed stratigraphical, petrological and geochemical investigation on the island of Stromboli, Aeolian arc, Southern Tyrrhenian sea. Major and trace element data determined on a large quantity of samples from well-established stratigraphic positions indicate that the magmatological evolution of the island through time was more complex than previously known. The activity of the exposed part of Stromboli, which occurred over a time span of about 100 000 years, started with the emission of high-K calc-alkaline (HKCA) volcanics, which were covered by calc-alkaline (CA), shoshonitic (SHO), high-K calc-alkaline (HKCA) and potassic (KS) products. The most recent activity consists of HKCA lavas and the present-day SHO-basaltic volcanics emitted by mildly explosive “strombolian” activity. Most of the products are lavas, with minor amounts of pyroclastic rocks emplaced mainly during the early stages of activity. The transition from the SHO to the KS cycle was associated with the collapse of the upper part of the volcanic apparatus; the transition from KS to the present-day SHO activity has been found to have occurred at the time of the sliding of the western portion of the volcano that generated the “Sciara del Fuoco” depression. The rock series cropping out at Stromboli show variable enrichment in potassium, incompatible trace elements and radiogenic Sr which increase from CA through HKCA, and SHO up to KS rocks. Major, trace element and Sr-isotopic data agree in indicating that the HKCA and SHO series evolved by crystal/liquid fractionation starting from different parental liquids, whereas crustal assimilation appears to have been the leading process during the evolution of KS volcanics. Mixing processes also played a role although they can be well documented only when they occurred between magmas with different isotopic and geochemical characteristics. Geochemical modelling based on trace element and isotopic data indicates that the mafic magmas of the different volcanic series may be generated by melting of an upper mantle heterogeneously enriched in incompatible elements and radiogenic Sr by addition, via subduction, of different amounts of crustal material. Geochemical data, however, are also in agreement with the alternative hypothesis that the most mafic magmas of the different series have been generated by combined processes of fractional crystallization, assimilation and mixing of a CA magma in a deep-sited magma chamber; the mafic magmas formed by these complex processes were successively emplaced in a shallow reservoir where they evolved by simple fractional crystallization (HKCA and SHO series) and by assimilation of crustal material (KS). The occurrence of changes in the geochemical signatures of the magmas at the time of the structural modification of the volcano is believed to favour the hypothesis that the variable composition observed in the volcanic rocks of Stromboli is the result of processes occurring within the volcanic system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号