首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   13篇
  国内免费   1篇
测绘学   3篇
大气科学   13篇
地球物理   39篇
地质学   63篇
海洋学   12篇
天文学   11篇
自然地理   24篇
  2024年   2篇
  2022年   2篇
  2021年   4篇
  2020年   6篇
  2019年   9篇
  2018年   6篇
  2017年   6篇
  2016年   9篇
  2015年   2篇
  2014年   3篇
  2013年   7篇
  2012年   7篇
  2011年   4篇
  2010年   6篇
  2009年   7篇
  2008年   8篇
  2007年   9篇
  2006年   4篇
  2005年   8篇
  2004年   10篇
  2003年   4篇
  2002年   5篇
  2001年   3篇
  2000年   2篇
  1999年   4篇
  1998年   2篇
  1996年   2篇
  1995年   4篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1970年   2篇
  1967年   1篇
  1966年   1篇
排序方式: 共有165条查询结果,搜索用时 265 毫秒
1.
A four-year record from an inverted echo sounder deployed near Palmyra Island at 6°N in the central Pacific Ocean is compared with a simultaneous record of subsurface pressure from this island lagoon. A factor m, converting round-trip acoustic travel time to surface dynamic height relative to a deep pressure level, was estimated from the ratio of the spectra of the two records in the energetic synoptic oscillation band. Year-to-year variation in m was not statistically significant. For the overall record, m was found to be -70±8 dynamic m/s, where the error bounds represent a 90% confidence interval. This is consistent with first-baroclinic-mode excitation  相似文献   
2.
3.
Garnets from the Zermatt-Saas Fee eclogites contain narrow central peaks for Lu + Yb + Tm ± Er and at least one additional small peak towards the rim. The REE Sm + Eu + Gd + Tb ± Dy are depleted in the cores but show one prominent peak close to the rim. These patterns cannot be modeled using Rayleigh fractionation accompanied by mineral breakdown reactions. Instead, the patterns are well explained using a transient matrix diffusion model where REE uptake is limited by diffusion in the matrix surrounding the porphyroblast. Observed profiles are well matched if a roughly linear radius growth rate is used. The secondary peaks in the garnet profiles are interpreted to reflect thermally activated diffusion due to temperature increase during prograde metamorphism. The model predicts anomalously low 176Lu/177Hf and 147Sm/144Nd ratios in garnets where growth rates are fast compared to diffusion of the REE, and these results have important implications for Lu–Hf and Sm–Nd geochronology using garnet.  相似文献   
4.
Elastic crack models predict a linear relationship between displacement (u) and rupture (trace) length (L) during slip in a fault zone. Attempts to find universal-scaling laws for L/u, however, have generally failed. Here I propose that these attempts have failed because they do not take into account the changes in the mechanical properties, in particular Young's modulus (stiffness), of the fault zone as it evolves. I propose that Young's modulus affects fault displacement both spatially and temporally: spatially when the trace of a fault at a given time dissects host rocks of different stiffnesses, and temporally when the stiffness of the fault zone itself changes. During the evolution of an active fault zone, the effective Young's modulus of its damage zone and fault core normally decreases, and so does the L/u ratio of the fault. By contrast, during inactive periods sealing and healing of the damage zone and core may increase the stiffness, hence the L/u ratio in subsequent slips. This model predicts that not only will the scaling of L/u within a given fault population vary in space and time, but also that of individual faults. To cite this article: A. Gudmundsson, C. R. Geoscience 336 (2004).  相似文献   
5.
Melting experiments of calcite were performed on the join CaCO3‐H2O at a pressure of 1000 bars. The system evolves to the ternary CaO‐H2O‐CO2 system during melting experiments. Our experiments show that partial melting of calcite begins at a low temperature, below 650 °C. Such a low partial melting temperature for carbonates revives the debate about the presence of carbonate melts in the upper crust. More specifically, the conditions for carbonate partial melting are present in carbonate host rocks undergoing contact metamorphism at high temperatures in the presence of water‐rich fluid. The presence of carbonate melts influences physical parameters such as viscosity and permeability in contact aureoles, and, furthermore, decarbonation reactions release massive amounts of CO2.  相似文献   
6.
In situ analysis of a garnet porphyroblast from a granulite facies gneiss from Sør Rondane Mountains, East Antarctica, reveals discontinuous step‐wise zoning in phosphorus and large δ18O variations from the phosphorus‐rich core to the phosphorus‐poor rim. The gradually decreasing profile of oxygen isotope from the core (δ18O = ~15‰) to the rim (δ18O = ~11‰) suggests that the 18O/16O zoning was originally step‐wise, and modified by diffusion after the garnet rim formation at ~800°C and 0.8 GPa. Fitting of the 18O/16O data to the diffusion equation constrains a duration of the high‐T event (~800°C) to c. 0.5–40 Ma after the garnet rim formation. The low δ18O value of the garnet rim, together with the previously reported low δ18O values in metacarbonates, indicates regional infiltration, probably along a detachment fault, of low δ18O fluid/melt possibly derived from meta‐mafic to ultramafic rocks.  相似文献   
7.
8.
High precision U–Pb geochronology of rutile from quartz–carbonate–white mica–rutile veins that are hosted within eclogite and schist of the Monte Rosa nappe, western Alps, Italy, indicate that the Monte Rosa nappe was at eclogite-facies metamorphic conditions at 42.6 ± 0.6 Ma. The sample area [Indren glacier, Furgg zone; Dal Piaz (2001) Geology of the Monte Rosa massif: historical review and personal comments. SMPM] consists of eclogite boudins that are exposed inside a south-plunging overturned synform within micaceous schist. Associated with the eclogite and schist are quartz–carbonate–white mica–rutile veins that formed in tension cracks in the eclogite and along the contact between eclogite and surrounding schist. Intrusion of the veins at about 42.6 Ma occurred at eclogite-facies metamorphic conditions (480–570°C, >1.3–1.4 GPa) based on textural relations, oxygen isotope thermometry, and geothermobarometry. The timing of eclogite-facies metamorphism in the Monte Rosa nappe determined in this study is identical to that of the Gran Paradiso nappe [Meffan-Main et al. (2004) J Metamorphic Geol 22:261–281], confirming that these two units have shared the same Alpine metamorphic history. Furthermore, the Gran Paradiso and Monte Rosa nappes underwent eclogite-facies metamorphism within the same time interval as the structurally overlying Zermatt-Saas ophiolite [∼50–40 Ma; e.g., Amato et al. (1999) Earth Planet Sci Lett 171:425–438; Mayer et al. (1999) Eur Union Geosci 10:809 (abstract); Lapen et al. (2003) Earth Planet Sci Lett 215:57–72]. The nearly identical PTt histories of the Gran Paradiso, Monte Rosa, and Zermatt-Saas units suggest that these units shared a common Alpine tectonic and metamorphic history. The close spatial and temporal associations between high pressure (HP) ophiolite and continental crust during Alpine orogeny indicates that the HP internal basement nappes in the western Alps may have played a key role in exhumation and preservation of the ophiolitic rocks through buoyancy-driven uplift. Coupling of oceanic and continental crust may therefore be critical in preventing permanent loss of oceanic crust to the mantle.  相似文献   
9.
Shallow-water limestones of presumed Late Cretaceous and Eocene age, interbedded with basaltic lavas, were described by earlier authors from São Nicolau in the northwestern part of the Cabo Verde archipelago. If confirmed, these ages would imply late Mesozoic shallow-marine and subaerial volcanic activity in the Cabo Verde archipelago, and document a geological history very different from that known so far from other Cabo Verde Islands, from which no subaerial volcanic activity before the mid-Cenozoic is known. Our re-investigation of the foraminiferal fauna indicates a Late Miocene age for the presumed Late Cretaceous and Eocene limestones. The hypothesis of a long-lived hot spot, active by the Early Cretaceous, and of a major island-building stage in the Cabo Verde Islands during this period, is therefore not supported by the present bio- or chronostratigraphic data.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号