首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地球物理   4篇
  2016年   1篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
排序方式: 共有4条查询结果,搜索用时 78 毫秒
1
1.
Micro-dams in West African savannas are investigated in conjunction with aquatic fauna and human activities at a community level. A study area is chosen in the Northern Region of Ghana. The micro-dams in the study area serve as habitats for fish, providing food and job opportunities for inhabitants, but their construction has sacrificed rice fields and fragmented migration routes of fish. A stochastic population dynamics model is developed to rigorously assess the effect of establishing fish passages between the fragmented habitats containing the micro-dams on the ichthyological fauna. Values of the model parameters are estimated from the literature and results of field surveys, in which ten fish species including cichlidae, clariidae, bagridae, schilbeidae, cyprinidae, and alistidae are reported to be present. A sustainability criterion is proposed to judge whether a set of model parameters realizes stationarity of the stochastic process representing the population dynamics. It is suggested that ichthyological fauna can be sustainable provided that the fishing activity is restricted to upstream migrating and fast growing species. More generally, building micro-dams in West African savannas will be much better justified when the dams are equipped with appropriately designed fish passages.  相似文献   
2.
It may be paradoxical but subsistence rainfed agriculture is the predominant source of food in Sub-Saharan Africa where the production uncertainty is associated with the stochastic nature of rainfall. This paper attempts to comprehend the rationale of this situation by a mathematical approach. Considering the level of drought severity as the zero-reverting Ornstein–Uhlenbeck process, optimality of rainfed agriculture is investigated in the context of stochastic control theory. Occurrence of drought terminating growth of crops is modelled with the concept of first exit time. A stochastic control problem allowing for virtual cost of irrigation, water stress to crops, and benefits of farming is formulated with irrigation effort as the control variable. The Hamilton–Jacobi–Bellman equation governing the optimal control is studied to identify the set of cost functions optimizing rainfed agriculture in an inverse problem approach. Data and information were collected in the coastal savanna agro-ecological zone of Ghana, to identify model parameters, formulate the stochastic control problem, solve the inverse problem, and then verify optimality of rainfed agriculture. The results indicated that rainfed agriculture is not optimal when the crop is more tolerant to water stress.  相似文献   
3.
Stochastic control of a micro-dam irrigation scheme for dry season farming   总被引:1,自引:1,他引:0  
Micro-dams are expected to be feasible options for water resources development in semi-arid regions such as the Guinea savanna agro-ecological zone of West Africa. An optimal water management strategy in a micro-dam irrigation scheme supplying water from an existing reservoir to a potential command area is discussed in this paper based on the framework of stochastic control. Water intake facilities are assumed to consist of photovoltaic pumping system units and hoses. The knowledge of current states of the storage volume of the reservoir and the soil moisture in the command area is fed-back to the intake flow rate. A system of two stochastic differential equations is proposed as a model for the dynamics of the micro-dam irrigation scheme, so that temporally backward solution of the Hamilton–Jacobi–Bellman equation determines an optimal control, which represents the optimal water management strategy. A computational procedure using the finite element method is successfully implemented to provide comprehensive information on the optimal control. The results indicate that the water initially stored in the reservoir can support full irrigation for about 80 days under the optimal water management strategy, which is predominantly based on the demand-side principle. However, the volatility of the soil moisture in the command area must be reasonably small.  相似文献   
4.
Droughts and floods are two opposite but related hydrological events. They both lie at the extremes of rainfall intensity when the period of that intensity is measured over long intervals. This paper presents a new concept based on stochastic calculus to assess the risk of both droughts and floods. An extended definition of rainfall intensity is applied to point rainfall to simultaneously deal with high intensity storms and dry spells. The mean-reverting Ornstein–Uhlenbeck process, which is a stochastic differential equation model, simulates the behavior of point rainfall evolving not over time, but instead with cumulative rainfall depth. Coefficients of the polynomial functions that approximate the model parameters are identified from observed raingauge data using the least squares method. The probability that neither drought nor flood occurs until the cumulative rainfall depth reaches a given value requires solving a Dirichlet problem for the backward Kolmogorov equation associated with the stochastic differential equation. A numerical model is developed to compute that probability, using the finite element method with an effective upwind discretization scheme. Applicability of the model is demonstrated at three raingauge sites located in Ghana, where rainfed subsistence farming is the dominant practice in a variety of tropical climates.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号