首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   1篇
地球物理   1篇
  2017年   1篇
排序方式: 共有1条查询结果,搜索用时 3 毫秒
1
1.
This paper proposes a new analytical model for masonry‐infilled R/C frames to evaluate the seismic performance considering R/C frame–infill interactions. The proposed analytical model replaces masonry infill with a diagonal compression strut, which represents distributed compression transferred between frame and infill interfaces. The equivalent strut width is presented as a function of the frame–infill contact length, which can be evaluated by static equilibriums related to compression balance and lateral displacement compatibility at the frame–infill interfaces. The proposed analytical model was verified through comparisons with experimental results obtained for several brick masonry‐infilled R/C frames representing a typical R/C building with nonstructural masonry infill in Indonesia. As a result, good agreements were observed between the experimental and analytical values of the lateral strength and ductility of the infilled frames. The seismic performances of two earthquake‐damaged R/C buildings with different damage conditions were evaluated considering infill effects by applying the proposed analytical model. Consequently, the nonstructural brick masonry infill significantly affected the seismic resistances of the buildings, which seemed to lead to differing levels of damage for each building. These results indicate that the proposed analytical model can be an effective tool for more precisely screening earthquake‐vulnerable existing R/C buildings in Indonesia. Copyright © 2016 The Authors. Earthquake Engineering & Structural Dynamics Published by John Wiley & Sons Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号