首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   0篇
地球物理   17篇
地质学   8篇
海洋学   9篇
天文学   13篇
自然地理   1篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   5篇
  2016年   4篇
  2015年   3篇
  2014年   4篇
  2013年   7篇
  2012年   5篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2004年   4篇
  2002年   1篇
  1994年   1篇
  1969年   1篇
  1967年   1篇
排序方式: 共有48条查询结果,搜索用时 78 毫秒
1.
The deep structure of the gabbro–anorthosite–rapakivi granite (“AMCG-type”) Korosten Pluton (KP) in the northwestern Ukrainian Shield was studied by 3-D modelling of the gravity and magnetic fields together with previous seismic data. The KP occupies an area of ca. 12,500 km2 and comprises several layered gabbro-anorthositic intrusions enveloped by large volumes of rapakivi-type granitoids. Between 1.80 and 1.74 Ga, the emplacement of mafic and associated granitoid melts took place in several pulses. The 3-D geophysical reconstruction included: (a) modelling of the density distribution in the crust using the observed Bouguer anomaly field constrained by seismic data on Moho depth, and (b) modelling of the magnetic anomaly field in order to outline rock domains of various magnetisation, size and shape in the upper and lower crust. The density modelling was referred to three depth levels of 0 to 5, 5 to 18, and 18 km to Moho, respectively. The 3-D reconstruction demonstrates close links between the subsurface geology of the KP and the structure of the lower crust. The existence of a non-magnetic body with anomalously high seismic velocity and density is documented. Most plausibly, it represents a gabbroic stock (a parent magma chamber) with a vertical extent of ca. 20 km, penetrating the entire lower crust. This stock has a half-cylindrical shape and a diameter of ca. 90 km. It appears to be connected with a crust–mantle transitional lens previously discovered by EUROBRIDGE seismic profiling. The position of the stock relative to the subsurface outlines of the KP is somewhat asymmetric. This may be due to a connection between the magmatism and sets of opposite-dipping faults initially developed during late Palaeoproterozoic collisional deformation in the Sarmatian crustal segment. Continuing movements and disturbances of the upper mantle and the lower crust during post-collisional tectonic events between 1.80 and 1.74 Ga may account for the long-lived, recurrent AMCG magmatism.  相似文献   
2.
3.
The testing and development of topological approaches to the analysis of solar magnetic fields are considered. A technique based on the geometry of random fields, mathematical morphology and topology, and scale-space analyses are applied to describe and diagnose the pre-flare dynamics of the magnetic fields of solar active regions using HMI/SDO magnetograms. The results show that this formalism can be used to diagnose pre-flare dynamics over time intervals that are of practical interest.  相似文献   
4.
We study accelerating dynamics from Born-Infeld-f(R) gravity in a simplified conformal approach without matter. In Makarenko et al. (arXiv:1404.2850 [gr-qc], 2011b) it was derived eventually any Dark Energy cosmology from above theory. In this Letter we apply the technique of Makarenko et al. (arXiv:1404.2850 [gr-qc], 2011b) to show that Born-Infeld-f(R) gravity may describe very realistic universe admitting the unification of early-time inflation with late-time acceleration. Specifically, the evolution with periodic as well as non-periodic behavior is considered with possibility to cross the phantom-divide at early or late-times.  相似文献   
5.
The forecast of the decadal average sunspot number (SN) becomes possible with an extension of telescopic observations based on proxy reconstructions using the tree ring radiocarbon data during the Holocene. These decadal numbers (SNRC) provide a powerful statistic to verify the forecasting methods. Complicated dynamics of long-term solar activity and noise of proxy-based reconstruction make the one-step-ahead forecast challenging for any forecasting method. Here we construct a continuous data set of SNRC which extends the group sunspot number and the international sunspot number. The known technique of nonlinear forecast, the local linear approximation, is adapted to estimate the coming SN. Both the method and the continuous data set were tested and tuned to obtain the minimum of a normalized average prediction error (E) during the last millennium using several past millennia as a training data set. E=0.58σ D is achieved to forecast the SN successive differences whose standard deviation is σ D=7.39 for the period of training. This corresponds to the correlation (r=0.97) between true and forecasted SN. This error is significantly smaller than the prediction error when the surrogate data were used for the training data set, and proves the nonlinearity in the decadal SN. The estimated coming SN is smaller than the previous one.  相似文献   
6.
7.
The possibility to apply long-term regional series to reconstruct the Earth’s global temperature in the past is considered. It is shown using symbolic analysis methods that significant (on the so-called order patterns) are relations of time series of St. Petersburg temperature with certain regional and global series. New sets of global temperature reconstructions, starting from the mid-18th century, are constructed on the basis of the previously proposed MSR and DPS methods.  相似文献   
8.
9.
The north–south (N–S) asymmetry of solar activity is a known statistical phenomenon, but its significance is difficult to prove or to explain theoretically. Here we consider each solar hemisphere as a separate dynamical system connected with the other hemisphere via an unknown coupling parameter. We use a nonlinear dynamics approach to calculate the scale-dependent conditional dispersion (CD) of sunspots between hemispheres. Using daily Greenwich sunspot areas, we calculate the Neumann and Pearson chi-squared distances between CDs as indices showing the direction of coupling. We introduce an additional index of synchronization that shows the strength of coupling and allows us to distinguish between complete synchronization and independency of hemispheres. All indices are evaluated in a four-year moving window showing the evolution of coupling between hemispheres. We find that the driver-response interrelation changes between hemispheres have a few pulses during 130 years of Greenwich data with an at least 40-year-long period of unidirectional coupling. These sharp nearly simultaneous pulses of all causality indices are found at the decay of some 11-year cycles. The pulse rate of this new phenomenon of dynamic coupling is irregular: although the first two pulses repeat after the 22-year Hale cycles, the last two pulses repeat after three and four 11-year cycles, respectively. The last pulse occurs at the decay phase of Cycle 23, which means that the next pulse will likely appear during the decay of the future Cycle 25 or later. This new phenomenon of dynamic coupling reveals additional constraints for understanding and modeling the long-term behavior of solar activity cycles.  相似文献   
10.
Geomagnetism and Aeronomy - The chaotic component in solar-activity variations, the limited amount of observational statistics, and the use of proxy data impose limitations on long-term...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号