首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地球物理   5篇
  2002年   1篇
  2000年   1篇
  1987年   3篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
2.
Bulletin of Volcanology - The bulk composition of magma erupted from Volcán Arenal has remained nearly constant (SiO2 = 53.6–54.9&;nbsp;wt%; MgO = 5.0–4.5&;nbsp;wt%) during...  相似文献   
3.
Concentrations of chloride and sulfate and pH in the hot crater lake (Laguna Caliente) at Poás volcano and in acid rain varied over the period 1993–1997. These parameters are related to changes in lake volume and temperature, and changes in summit seismicity and fumarole activity beneath the active crater. During this period, lake level increased from near zero to its highest level since 1953, lake temperature declined from a maximum value of 70°C to a minimum value of 25°C, and pH of the lake water increased from near zero to 1.8. In May 1993 when the lake was nearly dry, chloride and sulfate concentrations in the lake water reached 85,400 and 91,000 mg l−1, respectively. Minimum concentrations of chloride and sulfate after the lake refilled to its maximum volume were 2630 and 4060 mg l−1, respectively. Between January 1993 and May 1995, most fumarolic activity was focused through the bottom of the lake. After May 1995, fumarolic discharge through the bottom of the lake declined and reappeared outside the lake within the main crater area. The appearance of new fumaroles on the composite pyroclastic cone coincided with a dramatic decrease in type B seismicity after January 1996. Between May 1995 and December 1997, enhanced periods of type A seismicity and episodes of harmonic tremor were associated with an increase in the number of fumaroles and the intensity of degassing on the composite pyroclastic cone adjacent to the crater lake. Increases in summit seismic activity (type A, B and harmonic tremor) and in the height of eruption plumes through the lake bottom are associated with a period of enhanced volcanic activity during April–September 1994. At this time, visual observations and remote fumarole temperature measurements suggest an increase in the flux of heat and gases discharged through the bottom of the crater lake, possibly related to renewed magma ascent beneath the active crater. A similar period of enhanced seismic activity that occurred between August 1995 and January 1996, apparently caused fracturing of sealed fumarole conduits beneath the composite pyroclastic cone allowing the focus of fumarolic degassing to migrate from beneath the lake back to the 1953–1955 cone. Changes in the chemistry of summit acid rain are correlated changes in volcanic activity regardless of whether fumaroles are discharging into the lake or are discharging directly into the atmosphere.  相似文献   
4.
5.
Arenal volcano in Costa Rica has been erupting nearly continuously, but at a diminishing rate, since 1968, producing approximately 0.35 km3 of lavas and tephras that have shown consistent variations in chemistry and mineralogy. From the beginning of the eruption in July 1968 to early 1970 (stage 1, vol.=0.12 km3) tephras and lavas became richer in Ca, Mg, Ni, Cr, Fe, Ti, V, and Sc and poorer in Al2O3 and SiO2. Concentrations of incompatible trace elements (including Sr) decreased by 5%–20%. Phenocryst contents increased 20–50 vol%. During stage 2 (1970–1973, vol. = 0.13 km3) concentrations of compatible trace elements rose, and concentrations of incompatible trace elements either remained constant or also rose. Al2O3 contents decreased by 1 wt%. Phenocryst content increased slightly, principally due to increased orthopyroxene. During stage 3 (mid-1974 to the present, vol.= 0.10 km3) concentrations of SiO2 increased by 1 wt%, compatible trace elements decreased slightly, and incompatible trace element concentrations increased by 5% to 10%. Although crystals increased in size during stage 3, their overall abundance stayed roughly constant.Our modeling suggests that early stage-1 magmas were produced by boundary layer fractionation under high-p H2O conditions of an unseen basaltic andesitic magma that intruded into the Arenal system after approximately 500 B.P. Changes in composition during stage 2 resulted from mixing of this more mafic original magma with new magma that had a similar SiO2 content, but higher compatible and incompatible element concentrations. The changes during stage 3 resulted from continued influx of the same magma plus crystal removal.We conclude that the eruption proceeded in the following way. Before 1968 zoned stage-1 magma resided in the deep crust below Arenal. A new magma intruded into this chamber in July 1968 causing ejection of the stage-1 magmas. The intruding magma mixed with mafic portions of the original chamber producing the mixed lavas of stage 2. Continued mixing plus crystal fractionation along the chamber and conduit walls produced stage-3 lavas. The time scales of crustal level magmatic processes at Arenal range 100–103 years, which are 3–6 orders of magnitude shorter than those of larger, more silicic systems.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号