首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   1篇
大气科学   2篇
地球物理   9篇
地质学   11篇
自然地理   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2011年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1978年   2篇
  1975年   1篇
  1971年   1篇
排序方式: 共有24条查询结果,搜索用时 721 毫秒
1.
Summary Mineralogical composition and trace elements distribution in the < 2-m size fraction of Late Cretaceous-Oligocene shales from the Southern Apennines (Italy) are presented.The clay mineral assemblage consists of illite, smectite, kaolinite and minor chlorite. Analytical evidence points to a detrital micaceous precursor for illite and smectite. Accessory phases were also found. Chemical data, normalized with respect to the Post-Archean Australian Shales (PAAS), indicate depletion of Ba, Rb, Y, Zr and enrichment of Nb. PAAS-normalized REE-patterns exhibit a positive Eu anomaly and HREE depletion. A kaolinite-rich sample has high REE contents in contrast to smectite-rich fractions. A REE-pattern without appreciable Eu anomaly is displayed by the illite-rich sample.Statistical data processing indicates a link between Ti, P, Y, Zr, Nb and Yb, suggesting that accessory phases may play a role in controlling HREE and that the observed LREE/HREE fractionation may also be due to hydraulic sorting of these phases. An important La-kaolinite relationship accounts for the capability of this phase to host LREE. Smectite and, thus, adsorption mechanisms, appear to exert a limited role in distributing REE. The Eu anomaly is a source inherited feature, probably not determined solely by clay minerals.
Spurenelement-Verteilung und mineralogische Zusammensetzung der < 2m Fraktion von Schiefern aus dem südlichen Appenin (Italien)
Zusammenfassung Die mineralogische Zusammensetzung und die Verteilung der Spurenelemente in der < 2 m Fraktion von spät-kretazischen-oligozänen Schiefern aus dem südlichen Appenin (Italien) werden in Übersicht gebracht. Die Tonmineral-Vergesellschaftung besteht aus Illit, Smectit, Kaolinit und kleineren Mengen von Chlorit. Analytische Daten weisen darauf hin, daß Illit und Smectit aus einem detritischen Glimmermineral hervorgegangen sein dürften. Auch akzessorische Phasen kommen vor. Chemische Daten zeigen gegenüber post-Archaischen australischen Schiefern (PAAS) eine Verarmung in Ba, Rb, Y, Zr und eine Anreicherung von Nb. PAAS-normalisierte SEE-Verteilungsmuster zeigen eine positive Eu Anomalie und eine Verarmung an HSEE. Eine Kaolinit-reiche Probe zeigt hohe Gehalte an gesamten SEE im Gegensatz zu einer Smectit-reichen. Die Illit-reiche Probe zeigt ein SEE-Verteilungsmuster ohne deutliche Eu Anomalie.Statistische Verarbeitung der Daten läßt eine Verbindung zwischen Ti, P, Y, Zr, Nb und Yb erkennen; dies weist darauf hin, daß akzessorische Phasen einen Einfluß auf die HSEE-Verteilung haben und daß die beobachtete LSEE/HSEE Fraktionierung auch auf hydraulische Sortierung dieser Phasen zurückgehen könnte. Es gibt eine bedeutsame Beziehung zwischen La und Kaolinit und diese unterstreicht die Fähigkeit des Kaolinits für die Aufnahme von LSEE. Smectit und Adsorptionsmechanismen scheinen eine geringe Rolle für die Verteilung der SEE zu spielen. Die Eu Anomalie ist eine Erscheinung, die auf die Quelle der sedimentären Minerale zurückgeht und wahrscheinlich nicht ausschließlich durch Tonminerale bestimmt wird.
  相似文献   
2.
More than fifty heat flow measurements in Italy are examined. The values, corrected only for local influences (when present), are related to the main geological features with the following results: foreland areas, 55±19 mW m–2, foredeep areas, 45±21 mW m–2; folded regions and intermountain depressions, 76±29 mW m–2. In volcanic areas the heat flow rises to in excess of 600 mW m–2. From a tectonic point of view, these values are consistent with the hypothesis that the Apennine chain is intersected by two arcuate structures: the first from Liguria to Latium is very probably a continental arc, that is an are which occurs within a continent, and the second from Campania to Calabria is very similar from geophysical evidence to the classic island arcs.  相似文献   
3.
The Apennines comprise a Neogen—Quaternary accretionary prism that shows several anomalies with respect to classic alpine-type mountain belts, namely (i) low elevation, (ii) a shallow new Moho below the core of the belt, (iii) high heat flow in the internal parts, (iv) mainly sedimentary cover involved in the prism, (v) a deep foredeep and (vi) a fully developed back-arc basin. The suction exerted by a relatively eastward migrating mantle can determine the eastward retreat of the subduction zone and an asthenospheric wedging at the retreating subduction hinge. Heat flow, geochemical and seismological data support the presence of a hot mantle wedge underlying the western side of the Apenninic accretionary prism. A thermal model of the belt with foreland dipping isotherms fits with deepening of the seismicity toward the east. Mantle volatiles signatures are also widespread in springs along the Apennines.  相似文献   
4.
An innovative solution for the seismic protection of existing masonry structures is proposed and investigated through shake table tests on a natural scale wall assemblage. After a former test series carried out without reinforcement, the specimen was retrofitted using Steel Reinforced Grout. The strengthening system comprises horizontal strips of ultra‐high strength steel cords, externally bonded to the masonry with hydraulic lime mortar, and connectors to transversal walls, applied within the thickness of the plaster layer. In order to assess the seismic performance of the retrofitted wall, natural accelerograms were applied with increasing intensity up to failure. Test results provide a deep understanding of the effectiveness of mortar‐based composites for improving the out‐of‐plane seismic capacity of masonry walls, in comparison with traditional reinforcements with steel tie‐bars. The structural implications of the proposed solution in terms of dynamic properties and damage development under earthquake loads are also discussed.Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
5.
6.
Weathering and transportation studies of the chemical composition of sediments have determined how surface fractionation processes modify the elemental signature due to provenance and tectonic setting of siliciclastic rocks. Although the bulk of the exposed upper continental crust comprises granitoids, metamorphic rocks from the intermediate to lower crust may be, in some geological contexts, the provenance of siliciclastic sediments. A preferential enrichment of the LREE relative to the HREE is observed in weathered, garnet-rich, kinzigitic paragneisses from the Calabrian Arc, southern Italy. This fractionation is due mostly to the mineralogical control exerted by monazite, which is concentrated in the silt-size fraction of the soil. However, a significant part of HREE, released during garnet alteration, is trapped by secondary minerals in the clay-sized fraction of the soil, in a manner similar to Pb2+ and Cs+, cations of some concern in environmental geochemistry. In the weathered material monazite is also important in controlling the Eu-anomaly, the negative size of which increases with increasing Th addition. The Eu-anomaly in the clay-sized fraction of the soil is very similar to that of the fresh rock, suggesting that the Eu/Eu* index in pelitic sediments deriving from the intermediate to lower crust may be regarded as a reliable indicator of parental affinity. Other provenance indicators include La/Th, which share the same mineralogical control; indicators of contrasting mafic and felsic provenance, e.g. Sc/Th, should be used with care.  相似文献   
7.
The gravity anomaly field of the Tyrrhenian basin and surrounding regions reflects the complex series of geodynamic events active in this area since the Oligocene–Miocene. They can resume in lithospheric thinning and asthenospheric rising beneath the Tyrrhenian Basin, coexisting with the roll-back subduction of the African plate margin westward sinking beneath the Calabrian Arc. The geographic closeness between these processes implies an intense perturbation of the mantle thermal regime and an interference at regional scale between the related gravity effects.A model of the litho-asthenospheric structure of this region is suggested, showing a reasonable agreement with both the evidences in terms of regional gravity anomaly pattern and the results concerning thermal state and petro-physical features of the mantle. The first phase of this study consisted of the computation of the isotherms in the crust–mantle system beneath the Tyrrhenian Basin and, afterwards, of the density distribution within the partially melted upwelling asthenosphere. The second phase consisted of a temperature/density modelling of the slab subducting beneath the Calabrian Arc. Finally, a 21 / 2 interpretation of gravity data was carried out by including as constraints the results previously obtained. Thus, the final result depicts a model matching both gravity, thermal and petrographic data. They provide (a) a better definition of the thermal regime of the passive mantle rise beneath the Tyrrhenian basin by means of the estimation of the moderate asthenospheric heating and (b) a model of lithospheric slab subducting with rates that could be smaller than generally suggested in previous works.  相似文献   
8.
Heat flow and geodynamics in the Tyrrhenian Sea   总被引:1,自引:0,他引:1  
The present heat flow in the southern Tyrrhenian Sea appears as a transient thermal wave that has migrated eastward in time. The higher heat flow in the south‐eastern side of the basin confirms the suggestion of an eastward‐migrating rift. Punctuation of the Tyrrhenian backarc extension in lithospheric boudins is accompanied by a concentrated increase in heat flow generated by asthenospheric intrusions and related magmatism progressively moving eastward. The migration of the asthenosphere in the same direction could explain these phenomena.  相似文献   
9.
A better understanding of genesis and palaeoenvironmental setting of the Scisti silicei Formation (Lagonegro units, southern Italy) was achieved by means of geochemical analysis integrated with new stratigraphic information. Data show that major and trace element geochemistry of ancient clay-rich beds and banded cherts add new insights into the Mesozoic evolution of the Lagonegro basin. Sedimentary contributions to Jurassic shales sampled during this study were mainly derived from two major sources: (i) a dominant terrigenous fine-grained component, having affinity with average upper continental crust that had not undergone intense weathering and (ii) biogenic siliceous material. The latter component occurs in clay-rich layers from the “basal member” of the Scisti silicei Formation.

Composition varies up section and accounts for changes in the detrital supply due to bathymetric oscillations. The compositional variations from the basal to the overlying member are consistent with a distal source passing in time to a more “proximal” source, as indicated by sharp changes in the concentrations of detrital elements (Ti, Zr and Nb). It is likely that increased detrital input occurred through turbidity current deposition. Finally, the chemical features of the clay-rich layers from the upper cherty portion of the studied succession imply a progressive deepening of the basin.

The lack of any mafic and hydrothermal contributions in the Jurassic shales as well as the continental nature of detrital input suggests that the Lagonegro basin was located between two carbonate platforms, in accordance with the classical restoration of the African–Apulian palaeomargin. Thus, the basin acted as a preferential sink connected to the African cratonic areas through a southern entry point.  相似文献   

10.
The continental redbeds from the Internal Domains of the central-western Mediterranean Chains have an important role in the palaeogeographic and palaeotectonic reconstructions of the Alpine circum-Mediterranean orogen evolution since these redbeds mark the Triassic-Jurassic rift-valley stage of Tethyan rifting. The composition and the sedimentary evolution of the Middle Triassic to Lowermost Jurassic continental redbeds of the San Marco d’Alunzio Unit (Peloritani Mountains, Southern Italy), based on mineralogical and chemical analyses, suggests that the studied mudrock sediments share common features with continental redbeds that constitute the Internal Domains of the Alpine Mediterranean Chains. Phyllosilicates are the main components in the mudrocks. The 10 Å-minerals (illite and micas), the I–S mixed layers, and kaolinite are the most abundant phyllosilicates. The amount of illitic layers in I–S mixed layers coupled with the illite crystallinity values (IC) are typical of high degree of diagenesis, corresponding to a lithostatic/tectonic loading of about 4–5 km. The mineralogical assemblage coupled with the A-CN-K plot suggest post-depositional K-enrichments. Palaeoweathering proxies (PIA and CIW) record intense weathering at the source area. Further, the studied sediments are affected by reworking and recycling processes and, as consequence, it is likely these proxies monitor cumulative effect of weathering. The climate in the early Jurassic favoured recycling and weathering occurred under hot, episodically humid climate with a prolonged dry season. The source-area is the low-grade Paleozoic metasedimentary basement. Mafic supply is minor but not negligible as suggested by provenance proxies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号